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Abstract—We present HYPPO, a novel system to optimize
pipelines encountered in exploratory machine learning. HYPPO
exploits alternative computational paths of artifacts from past
executions to derive better execution plans while reusing materi-
alized artifacts. Adding alternative computations introduces new
challenges for exploratory machine learning regarding workload
representation, system architecture, and optimal execution plan
generation. To this end, we present a novel workload repre-
sentation based on directed hypergraphs, and we formulate
the problem of discovering the optimal execution plan as a
search problem over directed hypergraphs and that of selecting
artifacts to materialize as an optimization problem. A thorough
experimental evaluation shows that HYPPO results in plans that
are typically one order (up to two orders) of magnitude faster
and cheaper than the non-optimized pipeline and considerably
(up to one order of magnitude) faster and cheaper than plans
generated by the state of the art when materializing artifacts is
possible. Lastly, our evaluation reveals that HYPPO reduces the
cost by 3–4ˆ even when materialization cannot be exploited.

I. INTRODUCTION

Exploratory Machine Learning. Developing Machine Learn-
ing (ML) solutions involves an exploration phase with multiple
ML pipelines, each having different combinations of data
preprocessing, feature selection, model selection, or evaluation
metrics. Exploratory ML (EML) describes the iterative process
of trial and error, where an ML pipeline is revised and refined
until a satisfactory level of performance is achieved.

Exploratory search in ML is typically bound by time or cost
concerns. Recent studies argue that the main impediment to
the adoption of ML in many organizations is the high costs
incurred by running ML pipelines [1], [2]. One direction to
reduce such costs is to employ AutoML [3] techniques to
reduce the number of pipelines that need to be investigated. A
different, orthogonal approach is to reduce the cost of pipelines
by applying optimization techniques, such as reuse and mate-
rialization [4], [5], [6], [7]. The latter approach seems very
promising in exploratory scenarios, where an ML engineer
executes pipelines that construct or require artifacts computed
in past iterations, uncovering within-experiment reuse opportu-
nities. Moreover, in large organizations, multiple data scientists
work on the same data and perform similar ML tasks, thus
presenting across-experiments reuse opportunities.

Optimizing ML Pipelines. An ML pipeline is a collection of
computational tasks that produce and consume artifacts. Shar-
ing computations, a.k.a. common subexpression elimination,
is a widespread practice for optimization that merges multiple
executions into one to remove redundant tasks. It identifies
exact sequences of tasks applied to the same data. Reuse is
a technique that builds on the idea of common subexpression
elimination. It identifies artifacts computed in the past and, if
stored, decides if it is beneficial to load or recompute them.

The capacity to reuse highly depends on which previously
computed artifacts are stored. As a result, reuse is always
accompanied by a materialization strategy, which focuses on
which of the produced artifacts should be stored. State-of-
the-art research on the reuse-materialization problem in ML
pipelines [4], [5], [6], [7] showcases significant benefits.

Task and Artifact Equivalence. Equivalent subexpressions
are sequences of tasks that, although not identical, produce the
same results. They have been studied in the fields of relational
databases, batch or streaming data platforms [8], [9], or ana-
lytical workflow engines [10]. Equivalences exist: (a) Among
tasks, when different physical implementations of a logical
operator exist, e.g., a join can be implemented as merge-sort,
nested loops, or hash-join; when the same algorithm can be
implemented in different programming languages, libraries,
or frameworks, e.g., implementation of k-means in scikit-
learn, PyTorch, TensorFlow, cuML. (2) Among artifacts, when
different sequences of tasks produce the same result [11], [10].

Our Contributions. While existing ML pipeline optimization
techniques are based on the concepts of reuse and material-
ization, they fail to consider the impact of equivalences. Our
work addresses this gap, making a series of contributions.

Novel Pipeline Representation. We acknowledge ML tasks are
multi-input and multi-output and have complex dependencies
as one task requires the output of others. Directed hypergraphs
are a natural fit as a representation as they provide a one-to-one
mapping of multi-input and multi-output ML tasks to hyper-
edges and artifacts to nodes. Moreover, we explicitly represent
in the hypergraph the state of ML operators that can be fitted,
like preprocessing steps and ML models, which, as we present
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(a) ML pipeline code

(b) Pipeline, history, and  augmentation, represented as hypergraphs

(c) Possible execution plans of the pipeline
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Fig. 1: Overview of the pipeline optimization process in HYPPO. (a) A user seeks to execute an ML pipeline, described here
in Python-like language. (b) HYPPO represents the pipeline as a hypergraph P. Based on a history H capturing past pipeline
executions, HYPPO generates an augmented pipeline A. (c) This augmentation exploits equivalences to encode alternative
execution plans for the original pipeline. HYPPO explores the optimization space to identify the plan of minimum cost. While
materialization enables opportunities for artifact reuse, resulting here in plans Π1 and Π2, equivalences, here between current
task t2 and past t7, reveals additional optimization opportunities as captured in plans Π3–Π5.

in the evaluation, are an excellent candidate for materializa-
tion. In addition, hypergraphs are the appropriate abstraction
to capture alternative, equivalent ways to produce artifacts.
Equivalence introduces OR semantics: any alternative way to
produce an artifact suffices. In a hypergraph, a hyperedge/task
has multiple input nodes/artifacts annotating its dependencies,
and alternative computations can be annotated by multiple
incoming hyperedges/tasks to an artifact. Note that directed
graphs (DAGs), used in prior work [4], [5], cannot represent
equivalences. DAGs annotate computation dependencies as
multiple incoming edges (e.g., a join operator depends on more
than one artifact), making them unable to represent alternative
computations where an artifact may not be tied to one set
of dependent artifacts. In other words, DAGs encode AND
semantics: producing an artifact with multiple incoming edges
requires producing all its dependent artifacts. Capturing both
AND and OR semantics with DAGs is not possible, as we
cannot differentiate between edges that represent alternatives
and edges that together capture dependencies.

Example 1. Figure 1(a) shows an ML pipeline based on scikit-
learn (sk) and coded in Python-like syntax, implementing a
series of tasks: (t0) load a dataset, (t1) split it into train and
test datasets, (t2) use the train data to fit a standard scaler,
(t3) apply the scaler to the test data, (t4) fit a random forest
classifier to the train data, and finally, compute predictions
for the train (t5) and the test (t6).

This pipeline can be encoded as the hypergraph depicted in
Figure 1(b-left). We employ a special node s, called source,
to represent storage locations; all load tasks start from s.
Observe, for example, that t1 is a multi-output task represented

as a hyperedge connecting one (data v0) to two artifacts (train
and test v1, v2). Interestingly, fit-like tasks (t2, t4) have a state
that is explicitly captured as an artifact (v4, v6). Therefore,
tasks, such as transform and predict, that utilize this state are
represented as multi-input hyperedges, e.g., t3, t5, t6.

Logical Equivalences. We acknowledge that ML pipelines
often include different implementations of the same logical
operators. This leads to uncovering additional opportunities
for reusing artifacts from past iterations or experiments beyond
what standard reuse-materialization can offer.

Example 2. The idea of reuse-materialization is to log his-
torical executions and keep a record of materialized artifacts.
Figure 1(b-middle) depicts the history using our hypergraph
notation and highlights the materialized artifacts. In the past,
a task identical to t1 was executed, and its output, which
is identical to v1, v2, was decided to be materialized; for
convenience, we use the ids of the current pipeline (i.e., t1,
v1, v2) to represent this fact in the history.

Assume now that the past task t7 performed standard
scaling of the train data v1, just like t2, but using a function
in another framework (say TensorFlow). Since t2 and t7 are
different implementations of the same logical operator, they
are equivalent tasks, and thus produce equivalent artifacts
(v9 ” v3, v10 ” v4) when fed with the same input (v1).

Generation of an Execution Plan. In contrast to prior work,
we consider possible execution plans that exploit both reuse
opportunities and task/artifact equivalences. We identify part
of the history that is relevant in terms of reuse and equivalence



with the current pipeline. Thus, we enrich the pipeline with
the history to create an augmented one. The augmentation is
also represented as a hypergraph, with the important difference
that some artifacts might have multiple incoming hyperedges,
representing alternative ways to derive them: (a) from storage
if materialized, and (b) from equivalent tasks (or sequences
thereof). The state of the art on reuse-materialization [4], [5]
partially exploits the former optimization opportunities since
they reuse identical but not equivalent artifacts.

Example 3. Figure 1(b-right) depicts the augmented pipeline.
Here, we only highlight materialized artifacts instead of de-
picting the load tasks to avoid cluttering the hypergraph; e.g.,
artifact v1 has actually two incoming hyperedges, the depicted
task t1 and the non-depicted load task l1 connecting s to v1.

The discovered equivalences between current task t2 and
artifacts v3, v4, and previous task t7 and artifacts v9, v10, are
represented by the two parallel hyperedges t2 and t7 in the
augmentation. This encodes that to derive v3 or v4, there are
three possibilities: execute the current task t2, re-execute the
past task t7, or load from storage.

The augmentation encodes all possible ways to produce
the required artifacts or targets of the pipeline at hand. We
define the notion of an execution plan. Intuitively, a plan is a
hypergraph such that (a) it contains the target nodes, and (b)
every artifact it contains can be derived (computed or loaded)
by executing a set of tasks starting from the source. Assuming
a model that provides estimates (e.g., by utilizing observations
of past executions) of the cost (in terms of time or money)
of executing each task, we formulate and study the search
problem of finding the plan of minimum cost.

While the problem of reuse has been previously formulated
as a MAX-FLOW problem [4], the addition of alternative com-
putations transforms the problem into a computationally harder
search problem in directed hypergraphs. In fact, the problem
is NP-hard; finding a plan of minimum cost connecting the
source to a set of targets in a directed graph is the directed
variant of the Steiner tree problem. In practice, however, the
size of ML pipelines is moderate. A recent study on large
collections of pipelines residing on GitHub reports that most
pipelines had an average length of four, while a few extreme
pipelines contained up to a few dozens of tasks. Hence, the
hypergraphs typically derived from such ML pipelines would
also be moderately small, indicating that devising practical
algorithms to find optimal plans is feasible.

Example 4. Figure 1(c) presents a set of plans Π1–Π5
extracted from the augmentation. Π1 is the original pipeline,
while Π2 chooses to load materialized artifacts v1 and v2. Note
that previous work based on reuse-materialization can only
choose among Π1 and Π2. Plans Π3–Π5 are an option thanks
to the revealed task and artifact equivalences. For example,
Π3 chooses to execute task t7 instead of t2, while Π5 loads
materialized artifacts v2–v4. Assuming the combined cost of
loading tasks l2–l4 is lower than that of other options to derive
artifacts v2–v4, plan Π5 is the optimal.

The aforementioned contributions are manifested in the
design of our HYPPO system, short for Hypergraph Pipeline
Optimizer. The remainder of this paper is structured as follows.
Section II overviews related work. Section III introduces
the concepts and formulates research problems. Section IV
presents HYPPO. Section V presents a detailed experimental
evaluation of HYPPO. Section VI concludes the paper.

II. RELATED WORK

There exists a sheer amount of systems to manage the
ML lifecycle, including industry-scale implementations such
as Kubeflow [12], Apache SystemDS [13], AzureML [14]
or MLflow [15]. These systems primarily focus on tracking
pipeline executions and storing metadata, but they do not
address optimization aspects of exploratory analysis, such as
the reuse of artifacts among different pipelines. There are two
surveys on ML lifecycle management systems [16], [17].

Recent trends in AutoML focus on finding performant
pipelines [18], [19], [20] or models [21], [22] by reducing the
number of pipelines or models proposed for evaluation [3].
These approaches are orthogonal to our method since they
select a set of pipelines or models for evaluation, while our
work optimizes the execution time across multiple runs.

a) Materialization and reuse in EML: Lima [6] of-
fers detailed lineage tracking and reuse within a single
pipeline. However, it does not reuse artifacts between dif-
ferent pipelines.Studies on feature selection [7] and model
databases [23] have also explored Materialization-Reuse. MIS-
TIQUE [24], Helix [4], and Collab [5] focus on artifact
materialization and reuse across pipelines and are closer to
our work. Helix and Collab present reuse and materialization
techniques within set storage limits to minimize costs across
pipelines. Helix tackles the optimal reuse plan as a solvable
project selection problem [25] using polynomial-time algo-
rithms. Collab employs a linear algorithm, however, at the
expense of not always yielding the best solution. In terms of
materialization policies, Helix is restricted to artifacts from the
immediate preceding pipeline, while Collab expands this by
creating an experimental graph that encompasses materialized
artifacts from all prior pipelines.

b) Operator Equivalence: The concept of multiple phys-
ical implementations for equivalent logical operators has been
a staple in relational query optimization since its early days,
as seen in the Volcano optimizer [26] and in query rewriting
techniques [27]. This principle has since been applied across
various domains, including Video Analysis [28], optimization
of User-Defined Functions (UDFs) [29], [30], [31], [32], ana-
lytical workflows [33], and streaming big data applications [9].
Raven [10] has been developed for identifying equivalent
workflows, although it lacks a decision-making cost model.
In the realm of ML pipelines, KeystoneML [34] interprets a
logical sequence of operators and assigns a physical operator
to each. This process involves a cost model for every physical
operator and entails evaluating every potential physical imple-
mentation on a subset of the data before running a pipeline.



III. PROBLEM FORMULATION

A. ML Pipelines

An ML pipeline comprises a series of logical operators.
For example, a typical classification pipeline includes a STAN-
DARDSCALER operator that standardizes features by subtract-
ing the mean and scaling to unit variance. A logical operator
can be implemented in different ways, e.g., programming
languages (Python, Scala, Java, R, C#, etc.), ML frame-
works/libraries (scikit-learn, TensorFlow, PyTorch, JAX, Spark
MLlib, H20, RAPIDS, ML.NET etc.), algorithms (GPU/CPU
optimizations). We refer to these implementations as physical
operators. Some ML operators are configurable and accept
hyperparameters such as number of clusters, learning rate; we
refer to the set of hyperparameters and values collectively as
the configuration of an operator.

Physical ML operators expose API methods, which we call
tasks, and have an internal state, which we call op-state. There
exist some fundamental tasks that are common across physical
implementations; we call these task types. For example, pre-
processing operators like STANDARDSCALER expose fit and
transform tasks. A fit task computes the STANDARDSCALER’s
state, which comprises the mean and standard deviation of
the training data. A transform task employs these calculated
values to standardize features in both the training and test
data. ML models, such as linear regression, decision trees,
and neural networks, have a fit task that determines their
parameters/weights, i.e., their op-state, and a predict task that
uses these parameters/weights to make inferences/predictions.

Thus, a task consumes and produces one or more artifacts,
which can be: (a) data, including datasets with a schema
analogous to DataFrame objects [35] or NumPy Arrays [36],
and values or collections thereof; or (b) an op-state of some
operator, such as a pre-trained model.

B. A Hypergraph Representation

Past approaches represent ML pipelines as directed acyclic
graphs, either considering single-input or multiple-input oper-
ators (e.g., join). However, they fail to represent a large variety
of ML operations that are multiple-output as well. In this work,
we model them as directed hypergraphs (DH) [37], a natural
generalization of digraphs that have many applications, includ-
ing representing functional dependency in databases [38].

A directed hypergraph G “ pV,Eq consists of a set of
nodes V and a set of hyperedges E Ď 2V ˆ 2V; we also write
VpGq and EpGq to refer to the nodes and hyperedges of G. A
hyperedge e “ ptailpeq, headpeqq P E connects a set of nodes
Tpeq, called the tail, to a set of nodes headpeq, called the head,
where tailpeq, headpeq Ď V. A directed hypergraph reduces to
a directed graph when the head and tail of each hyperedge
consist of a single node.

A subhypergraph of some DH, is defined naturally. Given
a DH G “ pV,Eq, we say that G1

“ pV1,E1
q is a subhypergraph

of G if V1
Ď V, E1

Ď E, and E1
Ď 2V

1
ˆ 2V

1
.

In a directed hypergraph, a node v can be in the head and tail
of multiple hyperedges, similar to how a node in a directed

graph can have multiple incoming and outgoing edges. The
backward (resp. forward) star of v is the set of edges that have
v in its head (resp. tail), i.e., bstarpvq “ te P E : v P headpequ

and fstarpvq “ te P E : v P tailpequ.
An important concept in graphs is connectivity. There are

several concepts that generalize the notion of connectivi-
ty/reachability to directed hypergraphs. The concept relevant to
ML pipelines is B-connection, and is defined recursively [39].
Given a DH G, we say that a node t is B-connected to a node
s if (a) t ” s, or (b) there exists a hyperedge e P EpGq that
has t at its head headpeq and all nodes in its tail tailpeq are
B-connected to s. We extend this definition to a set of nodes
S. Given a DH G, we say that S is B-connected to a node t

if a dummy node s is B-connected to t in the extended graph
G1, having VpG1

q “ VpGq Y tsu and EpG1
q “ EpGq Y tps, Squ.

C. Definitions

In the following, we present the main concepts related to
ML pipelines, and we define them using hypergraphs.

1) Pipeline: An ML pipeline is represented as a labelled
hypergraph, called the pipeline and denoted as P.

Definition (Pipeline). A pipeline P is a labelled DH, where
nodes are artifacts and the hyperedges represent the tasks
producing and consuming the artifacts. A node is labelled with
name, type, and size. A hyperedge is labelled with name, type,
and configuration.

Note that each hyperedge in P represents a task and can
hence have multiple inputs and outputs. As a convention, we
use a special node called the source s to represent all possible
storage locations. Any artifact v that can be loaded by the
pipeline is connected to s with a hyperedge of type ‘load’.

2) Equivalence: Physical operators corresponding to the
same logical operator are considered equivalent. For example,
torch.pca lowrank and sklearn.decomposition.PCA are equiva-
lent implementations of the same logical operator, the PCA
decomposition. Following past work, we consider two tasks
equivalent when: (a) they have the same input; and either
(b) they correspond to the same logical operator and are of
the same task type, or (c) given the same input, they produce
identical results [40], [41], [42], [43], [44]. Moreover, two
artifacts are equivalent when they are produced by equivalent
tasks. Two notes are of interest here. First, the task equivalence
definition assumes that tasks are deterministic. However, in
certain use cases, it might make sense to consider the output of
stochastic tasks to be equivalent; e.g., the training of a model
under the same hyperparameters. Second, while ML pipelines
typically use consistent data formats for input and output
(e.g., DataFrame, NumPy arrays), cross-framework libraries
may use distinct intermediate representations (e.g., Apache
Beam’s PCollection). In this case, we acknowledge that the
equivalence of artifacts comes with some translation overhead.

3) Cost of Tasks: We consider two types of costs: compu-
tational time (e.g., milliseconds) and monetary (e.g., Euros).
The cost timepeq of task e represents its execution time if it is
a computational task or the retrieval time if it is a task that



loads an artifact from some storage (represented as the source
node s). The monetary cost pricepeq of task e relates to typical
cloud charging schemes and involves computing and storage:

pricepeq “ timepeq ˆ price per time unit

`
ÿ

vPtailpeq

sizepvq ˆ price per size unit

4) History: The history, denoted as H, archives the knowl-
edge acquired by previous pipeline executions. That is, it keeps
track of all artifacts and tasks, along with their metadata and
execution statistics, used by running pipelines.

Definition (History). The history H is a labelled directed
hypergraph. Nodes and hyperedges model artifacts and tasks,
respectively. A labelled node contains metadata as artifact
name, cost, type, size, access frequency, and version. A la-
belled edge comprises metadata as task name, cost, and type.

The history records all observed artifacts and tasks that
created those artifacts, along with their lineage and useful
information such as their cost and whether they are materi-
alized. We use the annotation e.cost to refer to any kind of
cost related to task e. Note that in H, the backward star of a
node indicates alternative ways to obtain the artifact, and its
forward star represents all tasks that depend on this artifact.

A new pipeline can be compared against H, exploring reuse
execution opportunities (by traversing the hypergraph) and
leveraging materialized artifacts (by following the pointers of
the hypergraph to storage). In this sense, the history serves as
a dual cache for ML pipeline execution.

5) Plan: A plan is a special type of directed hypergraph
that corresponds to an executable ML pipeline.

Any ML pipeline describes the partially ordered series of
tasks that need to be executed to produce the required artifacts,
which we call target nodes T. In the hypergraph representation,
these are sink nodes that have empty forward stars, i.e., there
is no downstream task that uses them.

Definition (Plan). Given hypergraph G, a set of sources S and
a set of targets T Ď VpGq, an S-T plan ΠST is a minimal (with
respect to deletion of nodes and hyperedges) subhypergraph
of G such that each target t P T is B-connected to S.

Note that we are typically interested in plans that have as
source nodes the node s representing the storage locations. A
plan has the following properties. (a) For every hyperedge e it
includes, all nodes in its head are reachable (i.e., B-connected)
from the source nodes. This implies that a plan can be executed
as for each task, there is always a way to generate its required
artifacts. (b) A plan contains all target nodes but does not
contain all source nodes. In an ML pipeline, the intuition is that
we want to compute all target artifacts T given the available
artifacts S, while some source nodes may not be utilized.

D. Problem Statement

The problem of optimizing ML pipelines consists of two
interrelated sub-problems, corresponding to the reuse and ma-
terialization tasks, respectively. In the first sub-problem, called

Plan, given an ML pipeline P and the history H comprising the
accumulated knowledge of past pipeline executions, the task
at hand is to identify the optimal plan Π to execute the input
pipeline by leveraging recorded information in the historical
hypergraph. To solve this, we employ a novel optimization
algorithm operating on our novel hypergraph representation,
that enables us to replace tasks, artifacts, or subhypergraphs,
of the input pipeline with equivalent, more beneficial tasks,
artifacts, or subhypergraphs or bypassing them altogether by
reusing a previously materialized set of artifacts. In the second
sub-problem, called Materialize, given a newly executed plan
Π, the history H, and a storage budget B, the task is to identify
which artifacts from Π to materialize and potentially which
materialized artifacts stored H to evict so that (a) the total size
of stored artifacts does not exceed B, and (b) the cost of future
pipeline executions is minimized.

1) Identify Plan: Given a labelled hypergraph G (such as
a plan), we define its cost, denoted by costpGq, as the sum of
the costs of its edges: costpGq “

ř

ePEpGq e.cost. We formulate
the planning problem for a pipeline requesting targets T:

Problem 1 (Plan). Given a weighted DH H, the source s, and
a set of terminal nodes T, find a plan ΠsT from s to T of
minimum cost.

It is interesting to relate this problem to existing graph
search problems. If the hypergraph is a directed graph, and
T “ ttu is a single target, a minimum cost plan is simply the
shortest path from s to t. If the hypergraph is a directed graph,
a minimum cost plan is a directed Steiner tree connecting the
root s to terminal nodes T [45]; finding one is NP-hard, and the
decision variant for undirected graphs was one of the original
21 NP-complete problems. If the target is a singleton, i.e.,
T “ ttu, a minimum cost plan corresponds to a minimum cost
B-hyperpath from s to t [39]; finding one is NP-hard [39].

2) Identify Materialization Strategy: We aim at identifying
the artifacts to materialize in the presence of a constraint
on the storage budget B, given that we can compute how
often the artifacts will be accessed, that we can estimate
their size, and that we can estimate the runtime associated
with materializing them (this information is maintained in the
history H). Hence, the materialization problem is formulated
as follows: given a storage budget B, we want to find the set
of artifacts to materialize that minimizes the cost for future
pipeline executions. This is an NP-hard combinatorial opti-
mization problem. Related work considers heuristic algorithms
employing a benefit function for each artifact as the reduction
in execution time it could potentially lead to [5], [4]. In our
current implementation, we follow a different approach.

Let v P VpHq be the artifact we examine to materialize or
not. The decision depends on the savings benefit gainpvq of the
said artifact. We employ a goodness measure to choose what
materialized artifacts we should prefer [46]. Various criteria
may be used to define goodness, such as (a) the time an
artifact was last accessed, which resembles a Least Recently
Used (LRU) eviction policy, (b) the frequency of access for
an artifact, i.e., Least Frequently Used (LFU) policy, (c) the
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size of an artifact in disk size, keeping larger artifacts in place,
i.e., Smaller-Fragment-First (SFF) eviction policy. Currently,
we consider a replacement strategy that shows excellent results
in our experiments and involves a combination of factors,
including: (a) artifact’s loading cost from storage, loadpvq, (b)
cost of re-computing an artifact for a future pipeline (minimum
cost of a plan s-t), costpvq, and (c) frequency of access,
freqpvq. In particular, for an artifact v, gainpvq is defined as the
expected penalty of re-producing the artifact, if it is evicted,
amplified by its popularity (access frequency), and normalized
by its loading time, which resembles a Smaller Penalty First
(SPF) replacement policy: gainpvq “

freqpvqˆcostpvq

loadpvq
. We use as an

estimate of costpvq the cost of re-computing the artifact v.
In addition, a related study reveals that most changes in a

pipeline occur after the pre-processing stage [47]. Hence, there
is an increased probability of pipeline reuse for artifacts that
are closer to the source. This decays at a rate proportional to
the depth of the artifact v, which is calculated as the average
number of hyperedges away from the source, to account for
the alternate ways (e.g., different plans, with and without
materialization) to obtain v. Hence, we can prioritize such
artifacts for materialization with a plan locality coefficient:
plpvq “ 1{e

1
depthpvq , where v P HpVq is an artifact and s is the

root of H. Hence, gain is weighted with pl as: plpvq ˆ gainpvq.
We formulate the problem of identifying the most beneficial

materialization strategy as follows.

Problem 2 (Materialize). Optimize:

maxw
ÿ

vPVpHq

1{e
1

depthpvq ˆ
freqpvq ˆ costpvq

loadpvq

subject to
ÿ

vPVpHq

psizepvq ˆ wvq ď B

where B is a given storage budget and wv P t0, 1u is a indicator
variable signifying if an artifact is materialized p1q or not p0q.

IV. THE HYPPO SYSTEM

A. Architecture

The core components of HYPPO’s architecture, illustrated
in Figure 2, are: (a) catalog, (b) parser, (c) equivalence verifier,
(d) plan generator, (e) cost estimator, (f) monitor, and (g) graph
manager. The pipeline optimization process starts with the user
submitting their ML code. The parser consults the catalog’s
dictionary to create a pipeline representation P from the

raw code. The augmenter then retrieves relevant historical
information from the history H to derive the augmentation A,
which encodes alternate options to generate artifacts in the
original pipeline. The plan generator retrieves estimations for
the cost of tasks and searches the space of alternatives included
in the augmentation to derive the optimal execution plan Π.
The plan is then executed, and the monitor collects important
metrics to feed the cost estimator. Finally, the graph manager
decides which artifacts to materialize and updates their history.
Next, we discuss the components of HYPPO.

B. Catalog

The catalog comprises the task dictionary D and history H.
a) Dictionary: The task dictionary contains an exten-

sible set of equivalent operators and tasks typically met
in ML pipelines. The dictionary entries follow the form:
D “ t . . . , lopi.tasktypej : r. . . , implk, . . . s, . . . u, where a task
type of a logical operator lop is associated with equivalent
physical implementations impl; the dictionary entries also
capture operator configurations—e.g., Ridgepalpha “ 75.0q.

Every logical operator must be associated with at least
one physical operator [48]. Logical operators with multi-
ple physical implementations are candidates for optimiza-
tion. For example, the ‘fit‘ task of the logical operator
PCA has equivalent physical implementations in scikit-learn
and in PyTorch. Hence, the dictionary would have an entry
PCA.fit : rsklearn.decomposition.PCA.fitpq, torch.pca lowrankpqs.
In our current implementation, the dictionary contains 40
operators such as various ensemble, evaluation, regression, im-
putation, scaler, PCA, and SVM methods. The dictionary can
be straightforwardly extended to support additional operators.

b) History: The history is the labelled hypergraph H de-
scribed in Section III-C4. The history contains the special node
s that represents artifact sources. The history thus also contains
hyperedges of type ‘load’ that connect s to each artifact that
can be retrieved either locally (i.e., is a materialized artifact) or
remotely from some storage location. As history continuously
grows, for practical considerations, not all its artifacts remain
materialized. The amount of artifacts stored is controlled by a
storage budget B and is maintained within the available quota
with appropriate eviction strategies. An example of history is
shown in the middle panel of Figure 1(b), where four artifacts
are materialized.

C. Parser

The parser processes the pipeline code and converts it to the
pipeline labelled hypergraph P. In doing so, it assigns names
to artifacts that encode equivalences that can be later exploited.

First, for each function call in the pipeline code, the parser
identifies the logical operator and task type it corresponds to by
probing the dictionary. If a task cannot be mapped to a known
operator in D, HYPPO treats it as an operator with a single
physical implementation (the one provided in the pipeline
code). After doing so, the parser creates the hypergraph P

that corresponds to the input pipeline. The parser annotates
each task with the name of the logical operator and task type.



An important step of the parser is the annotation of artifacts.
Each artifact v gets a name that encodes its backward star
in the pipeline using logical operators and task types. For
example, if this is a sequence of hyperedges/tasks e1, e2, the
artifact name would be e1.lop e1.tasktype e2.lop e2.tasktype.
In practice, names are converted to hashes of fixed size. The
parser also determines the required artifacts, the targets, which
are “sink” nodes with empty forward stars. As an example, the
code in Figure 1(a) is parsed to produce the pipeline presented
in the left panel of Figure 1(b).

D. Pipeline Augmenter

The function of the augmenter is to enrich the pipeline
P with alternative, equivalent options for task and artifact
computation that have been recorded in the history H. This
enables a larger space of potential computation and execution
options, allowing the HYPPO optimizer to pick a presumably
beneficial plan. The outcome of this process is an augmented
pipeline, or simply an augmentation A that is a DH with
the property that the pipeline P is a subhypergraph of A.
Compared to the pipeline, the augmentation contains the part
of the history H that B-connects s to all artifacts in H that are
equivalent to those in P. Equivalent artifacts are immediately
apparent thanks to our naming convention, which captures the
recursive definition of artifact equivalence.

The augmentation copies the set of targets (required arti-
facts) from the pipeline. The edges in the augmentation that
are not in the history, i.e., those in EpAqzEpHq, are called new
tasks, as they have not been recorded so far. When HYPPO
operates in the exploration mode (discussed shortly), then the
set of targets also contains those artifacts that are at the head of
the new tasks. The right panel of Figure 1(b) shows the result
of the augmenter applied to the pipeline and history depicted
in the other two panels.

E. Plan Generator

The plan generator solves Problem 1. It uses the cost
estimator to derive the cost of every task in the augmentation
A. Thus, each hyperedge e P EpAq is labelled with a positive
weight e.cost capturing the estimated cost of executing task e.

The plan generator seeks to identify an “optimal” plan
among those encoded in the augmented pipeline A. Specif-
ically, the plan should optimize for the total execution cost
(either computation or monetary). This is done by reusing ma-
terialized artifacts, as well as exploiting equivalent alternative
tasks to derive the artifacts contained in the original pipeline.
A plan may avoid executing some of the new tasks (under
the exploitation mode, discussed shortly), when they can be
exchanged by cheaper equivalent ones, or sequences thereof.

While Problem 1 is NP-hard in its general case, the size of
the augmented pipeline A is typically small. Thus, it is realistic
to search for the optimal plan; we show that the running time
of our algorithms is less than ten milliseconds. In what follows,
we present an exact algorithm for the problem at hand and
several variations. Lastly, we present the complexity analysis
and address any scalability issues.

Algorithm 1 presents the main algorithm OPTIMIZE, which
depends on the EXPAND procedure presented in Algorithm 2.
OPTIMIZE searches for a plan starting from the targets T and
proceeds traversing hyperedges backwards (from head to tail)
until it reaches the source s. Doing so, it maintains a list of
incomplete plans; an incomplete plan Π is a plan from some
set of source nodes Π.frontier to the target T. As the algorithm
proceeds, each incomplete plan is expanded until it becomes
a complete s-T plan or is pruned.

The algorithm groups incomplete plans in a data structure Q,
initially populated with the trivial plan from T to T containing
no hyperedges (lines 2–3). Then, the algorithm performs a
series of operations until Q is empty (lines 4–11). At each
iteration, an incomplete plan Π is selected and removed from
Q (line 5). If it has a cost greater than the best seen for a
complete plan, it is pruned (line 6). If the source of Π contains
no nodes other than s, Π is a complete plan (line 7), and, since
it was not pruned, it is the best plan seen; thus, the algorithm
records it and its cost (line 8). Otherwise, Π is incomplete and
expanded, leading to a set of plans Π inserted into Q.

We next discuss the EXPAND procedure. The goal is to
expand a given plan Π and generate new plans. The frontier of
a Π contains its sources and some additional nodes to explore.
Each expansion of Π is defined by a move, which is a set
of hyperedges to follow from nodes in Π.frontier (lines 3–
5). More precisely, a move is a set of hyperedges such that it
contains exactly one hyperedge from the backward star of each
frontier node. A single-move expansion (lines 6–14) of plan
Π is the plan Π1 that results from p by performing the move.
During the construction of Π1, each hyperedge of the move
is examined (lines 8–14). Specifically, the hyperedge and its
incident nodes are added to Π1, and its cost is updated (lines
9–11). Then, the algorithm updates (lines 12–14) the node
sets visited and frontier, whose function is to avoid cycles, and
determine the set of nodes to expand next, respectively.

Complexity Analysis and Scalability. The complexity of our
algorithm can be expressed as a factor of (a) the number
ℓ of nodes in the longest path of the augmented graph; (b)
the maximum number f of nodes in the frontier; and (c) the
maximum number m of alternatives for an artifact, i.e., the
maximum number of incoming hyperedges. For each plan
Π examined in the main loop of OPTIMIZE, the EXPAND
procedure generates Opmf

q new plans (each of the f frontier
nodes has m alternatives). Because the longest path is ℓ,
OPTIMIZE explores a search tree of depth ℓ and of fanout
Opmf

q, resulting in a worst-case complexity of Opmf¨ℓ
q.

An exhaustive search requires navigating over the com-
bination of all possible hyperedges (one per node). If we
denote as n the number of nodes in the graph, then the
complexity of exhaustively searching for all of the valid plans
in the augmented graph is Opmn

q. Yet, recall that not all
combinations lead to minimal B-connected paths (executable
plans), an aspect that our algorithm exploits by examining
only minimal B-connected paths. This is possible using an
inverse traversal of the graph pruning any node that does not



Algorithm 1: OPTIMIZE
Input: augmentation A; source s; target nodes T
Output: plan of minimum cost Π˚

“ pVΠ˚ , EΠ˚ q

1 cost˚
Ð 8; Π˚

Ð none
2 Π0.cost Ð 0; Π0.visited Ð ∅; Π0.frontier Ð T; Π0.plan Ð ∅
3 Q.insert(Π0)
4 while Q ‰ ∅ do
5 Π Ð Q.select() Ź pick a plan from Q
6 if Π.c ě c˚ then continue Ź ignore this plan
7 if Π.frontier “ tsu then Ź if plan is an s-T plan
8 cost˚

Ð Π.cost; Π˚
Ð Π

9 else
10 Π Ð EXPANDpA,Π, sq Ź expand this plan
11 foreach Π P Π do Q.insert(Π) Ź add all expansions to Q

12 return Π˚

participate in the production of T. Such pruning of the search
space allows for a more efficient exploration –with a worst-
case complexity of Opmf¨ℓ

q– than that of an exhaustive search.

Practical considerations. While n can increase rapidly, it has
been reported that, in practice, ℓ is usually bounded. A recent
study reveals that in practice the typical length of pipelines is
between 4–15, with only a handful of pipelines („10 among
„10K) reaching a length of about 50 [49]. Hence, we can
devise practical optimization techniques that would improve
the overall performance of our approach.

The influence of factor ℓ can be reduced by using guided
search. This is achieved by changing the data structure Q,
which defines the order in which plans are examined. We
implement Q as either a LIFO stack, denoted as OPTIMIZE-
STACK, or a priority queue with a key to the incomplete
plan’s cost, denoted as OPTIMIZE-PRIORITY. While both
OPTIMIZE-PRIORITY and OPTIMIZE-STACK have the same
worst-case complexity as exhaustive search, in practice, as
we show in our scalability study, this does not happen. A
direction for future research is to define an A˚-like heuristic
that estimates the minimum cost of expanding an incomplete
plan to the source. The influence of factor m can be reduced
by populating the augmented graph with only potentially
beneficial alternatives, while that of f can be reduced by
creating individual plans for each request and combining them.
However, this approach could lead to suboptimal plans.

Accuracy can be sacrificed for a potential “good” plan to be
discovered in time linear to the number of hyperedges. Using a
greedy approach, the expand function can be changed to return
a single move, the move with the minimum cost. Given the
frontier, follow the minimum cost hyperedge of each artifact in
the frontier. This approach can greatly reduce the complexity
since each node and hyperedge in the graph is visited at most
once, resulting in a worst-case complexity of Opn ` m ¨ nq.

Exploration vs. Exploitation. The plan generator may operate
in either exploration or exploitation mode. In the former,
HYPPO eagerly tries to learn more information, and thus, it
promotes the execution of new tasks, even if there is a clearly
cheaper plan to follow. On the other hand, in exploitation
mode, it leverages prior knowledge for plan generation.

In exploitation mode, OPTIMIZE is executed as is. In
exploration mode, we want the plan to include the new tasks.
To force this, we make some changes to the initialization step

Algorithm 2: EXPAND
Input: augmentation A; plan Π; source s
Output: set Π of plans expanded from Π

1 Π Ð ∅
2 foreach v P Π.frontierzs do
3 Ev Ð bstarpvq Ź set of options (hyperedges) to explore
4 M Ð

Ś

vPΠ.frontierzs Ev Ź cross product of sets of options
5 foreach move P M do Ź create a new plan adding move to Π
6 Π1

Ð copypΠq; Π1.frontier Ð ∅
7 foreach e P move do
8 newNodes “ headpeqzΠ1.visited
9 if newNodes ‰ ∅ then

10 Π1.cost Ð Π1.cost ` e.cost
11 Π1.visited Ð Π1.visited Y pnewNodesq
12 Π1.frontier Ð Π1.frontier Y ptailpeqzΠ.visited
13 Π1.plan Ð Π1.plan Y teu

14 Π Ð Π Y tΠ1
u

15 return Π

(line 2). For each new task e, we (a) add this edge to the
plan, i.e., VΠ0

Ð VΠ0
Y headpeq Y tailpeq, EΠ0

Ð EΠ0
Y teu,

and (b) update visited and frontier nodes as Π0.visited Ð

Π0.visited Y headpeq, Π0.frontier Ð Π0.frontier Y tailpeq.
As both modes serve a practical purpose, in our implemen-

tation, we steer the plan generator in either direction with a
tunable knob mo, defined as mo “ t#new tasks ˆ cexps with
cexp taking values in the range r0, 1s where 0 and 1 indicate a
preference towards exploitation and exploration, respectively.

F. Monitor

HYPPO’s monitor serves two functions. First, it monitors
pipeline execution and collects traces of metrics such as
resource utilization and execution time. These are used by
the cost estimator to update the statistics maintained for the
operators listed in the dictionary. Second, it monitors the
execution of new tasks and the cost of producing the resulted
artifacts. This information is used by the graph manager.

G. Cost Estimator

The cost estimator is responsible for (a) implementing our
cost model and (b) updating the statistics in the dictionary D.
The plan generator probes the cost estimator for computing
the costs of tasks involved in the plan according to the cost
model described in Section III-C3.

The physical implementation of a logical operator’s task in
D is accompanied by a cost estimate. This stems from a known
cost formula for the operator, parameterized by the input data
size. The developer who registers an operator implementation
may provide its cost formula. In several cases, though, the cost
formula is unknown. To deal with this, HYPPO maintains
standard, averaged statistics for operator execution collected
by the monitor. Gradually, HYPPO learns from past pipeline
runs and builds a cost model for pipeline operators based on
crude estimate buckets rather than specific values. Operators
can be profiled using performance models built using Bayesian
Optimization, a popular method for the optimization of black-
box functions that achieves reasonably accurate results with
only a few test runs; a technique inspired by CherryPick [53].
Other methods could be used here, too.



TABLE I: Description of pipelines used from two Kaggle competitions. T is the number of teams participating in the
competition, and S is the shape (rows, columns) of the original dataset.

Usecase Description T S
HIGGS [50] A competition that uses data from ATLAS experiment to identify the Higgs boson, the participants use different

preprocessing techniques like Imputation, Scalar, and Polynomial features and for learning SVM is used with different
regularization values similar to the pipelines used by [51].

1784 (800000, 30)

TAXI [52] A competition to build a model that predicts the total ride duration of taxi trips in New York City. The primary dataset
is released by the NYC Taxi and Limousine Commission, which includes pickup time, geo-coordinates, #passengers,
and other variables. This use case involves more preprocessing steps, and a variety of regressor models are used.

1254 (1000000,11)

H. History Manager

The history manager (a) keeps track of the execution of
new pipelines, maintains the history H accordingly, and (b)
solves Problem 2. The first function involves updating H with
new tasks that have been executed and new artifacts that have
been generated. As new artifacts are being produced, it also
performs the second function, which involves a critical deci-
sion: given a storage budget, which artifacts (from both, those
already materialized and the newly created with the execution
of a plan) to materialize for reducing the computation cost, and
thus, the execution time, of future pipelines. The outcome of
this decision is that certain artifacts that have been materialized
will be evicted from storage, while some new artifacts will be
stored. In the history H hypergraph, a materialized artifact v

is represented as a hyperedge from source s to v, which is
of type ‘load’ and whose cost represents the loading cost of
retrieving the artifact from storage. Therefore, when evicting
a materialized artifact, its corresponding ‘load‘ hyperedge is
removed—the node representing the artifact and all other
hyperedges in its backward and forward star are kept. Note that
data sources are not considered as candidates to be evicted.

In general, solving Problem 2 is an expensive mixed-integer
linear program. For practical purposes, we opted for a greedy
approach: we pick the artifact with the largest potential gain
weighted by the plan locality coefficient, i.e., plpvq ˆ gainpvq,
as long as it fits in budget B. Then, we proceed iteratively
until either no benefit to additional materialization is possible
or all available storage has been used.

V. EXPERIMENTAL EVALUATION

A. Setup

a) Software: HYPPO [54] has been developed in Python
3.10 (parser) and Java 8 (optimizer), uses NetworkX (3.1) for
the parser, extends sklearn.pipelines (1.2.2) for the pipeline
generator, and supports physical implementations from popular
ML libraries including sklearn, Tensorflow 2.12, pyglmnet 1.1,
lightgbm 3.3.5, libsvm 3.23, numpy 1.23.5, and scipy 1.10.1.

b) Datasets and pipelines: We consider two popular use
cases from Kaggle competitions: HIGGS [50] and TAXI [52]
(see also Table I). The same use cases were used and in the
related literature as well [5].

We developed a pipeline generator that creates sequences of
pipelines containing operators for preprocessing, learning, and
evaluation for each use case. Our choice of logical operators
was based on an analysis of popular submissions in the
respective competitions, including classification (HIGGS) and
regression (TAXI). We also used popular operators suggested
in two comprehensive studies: (a) a survey of research papers

from various domains [47], and (b) an analysis of millions of
GitHub repositories and enterprise ML pipelines [49]. For each
logical operator, we added physical implementations utilizing
code submitted in the two competitions and using popular
libraries [49]. We added a single implementation for use case
specific preprocessing and evaluation operators, and at least
two implementations for the rest.

We created 5 sequences for each experiment, ran each ex-
periment 5 times, and report the avg numbers for these runs.

c) Methods: We study the following methods that em-
ploy optimization strategies such as reuse, materialization,
and equivalence. NoOptimization: Our straw man, a base-
line approach that executes pipelines without any optimiza-
tion. Sharing: Our second baseline enhances efficiency by
identifying and eliminating common subexpressions across
computations (i.e., reuse). Helix [4]: Considers computation
sharing, employs materialization, and utilizes an optimization
algorithm searching for the optimal solution (best possible
plan based on the cost model employed). But Helix has
two limiting assumptions: subsequent pipelines do not dif-
fer much (only one operator change is considered at each
iteration), and does not keep history beyond the previous
iteration. Collab [5]: Considers computation sharing, employs
materialization, and its heuristic-based optimization strategy
opts for speed, resulting in ‘good enough plans’. HYPPO: Our
proposed method considers computations sharing and enables
reuse, materialization, and equivalence optimization strategies.

Although Helix and Collab support the same optimization
strategies, they implement them differently, and so they pro-
duce different results. Collab’s materialization strategy has
been reported as more efficient than Helix’s counterpart [5].
Our experiments corroborate this result. We noticed that
Collab outperforms Helix due to its efficient materialization
policy. Hence, we report Helix results only in our first exper-
iment to avoid overcrowding the rest of the figures. HYPPO
supports reuse, materialization, and equivalence. Hence, it is a
comprehensive solution that draws from the strengths of both
Helix and Collab while addressing their respective limitations.

B. Performance and cost analysis

1) (Scenario 1) Iterative pipeline execution: We consider
a sequence of pipelines of length #pipelines and a stor-
age budget B that remains constant during pipeline execution.
We start with an empty History H. We execute pipelines
sequentially, and after each execution, we materialize artifacts
until the storage budget is exhausted. After that, we replace
artifacts according to each method’s materialization strategy.
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(d) TAXI
Fig. 3: Exec. time and price (cost) with varying #pipelines
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Fig. 4: Exec. time and price (cost) with varying storage budget

We monitor the following metrics: (a) Cumulative Exe-
cution Time (cet), measured in seconds, which captures the
total duration required to run all pipelines; and (b) Price,
measured in Euros, a derived metric computed as a function
of cet and B as explained in Section III-C3. The variables
price per time unit and price per size unit are derived as fol-
lows: we averaged the costs of deploying a computational
instance (equivalent in capacity to our setup) across three
cloud service providers: AWS [55], Google Cloud [56], and
Azure [57]. Hence, the formula for calculating price is as
follows: price “ cet ˆ 0.00018 ` B ˆ 0.023.

We present experiments with varying #pipelines, storage
budget, and dataset size. We omit Sharing here as it resembles
NoOptimization due to sequential pipeline execution.

a) Varying #pipelines: Figure 3 shows the time to fin-
ish all pipelines (cumulative execution time) with varying
#pipelines, along with the corresponding price (cost in Euros).
The values in the plot indicate a method’s speedup compared
to the baseline NoOptimization. For the first 10 pipelines,
most tasks and artifacts are new (i.e., they have not been
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Fig. 5: Study of artifact and task types
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Fig. 6: Exec. time and price (cost) with varying dataset size

recorded yet in H). At this stage, Collab and Helix do not
reap any benefits (speed-up 1ˆ), indicating that little or no
materialized artifacts are reused. HYPPO, however, achieves
a 50% decrease in execution time, even though most of
the artifacts and tasks are new due to its ability to handle
equivalent expressions. As #pipelines increase, the recorded
information in H grows; hence, the new pipelines executed
contain a mix of new and known tasks and artifacts. Now, the
benefits of Collab and Helix become apparent. Still, Collab
performs better (up to 3.24ˆ on HIGGS and 5.28ˆ on TAXI)
as it benefits from materialized artifacts, while Helix benefits
mainly from reuse (up to 1.13ˆ and 1.3ˆ). HYPPO benefits
from its combination of optimization strategies, and its gain
almost doubles with the #pipelines, up to 40ˆ on HIGGS and
25ˆ on TAXI. Note that the HIGSS dataset is three times
larger than the TAXI dataset, having 3ˆ #features, and hence,
the pipelines take longer to execute. Similar speed-ups exist
for price gain, too (note that B is fixed in this experiment).

b) Varying storage budget: Figure 4 shows execution
time and price gain speed-ups with varying values of storage
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Fig. 7: Retrieval of artifacts and models, B“0

budget B as factors of the dataset size. Hence, B “ 0.01

corresponds to a storage budget equal to 1% of the total
dataset size. Note that for the same sequence of pipelines, B

is fixed. For this experiment, we have #pipelines = 50. As we
increase the storage budget, Collab achieves a performance
boost up to 1.36x when the storage budget equals 10% of
the total dataset size. This, however, comes at a significant
price cost. On the other hand, HYPPO performs much better.
For HIGGS, we observe that increasing the storage budget
above 0.1 ˆ dataset size provides small benefits in terms of
execution time, but it increases the price. In other words,
storing more artifacts provides no benefit, which indicates that
(re)computing these artifacts is more beneficial than loading
them. For TAXI, we observe that increasing the storage budget
above 0.1 ˆ dataset size provides small benefits in terms of
time, which, however, are not reflected in terms of price. Thus,
although loading artifacts improves execution time, still this
reduction in time is not substantial enough to account for their
storage cost. Artifacts produced by ML pipelines may have
sizes in the same order of magnitude as the original dataset;
our study clearly shows that storing artifacts comes at a cost.

c) Materialization decisions & beneficial artifact types:
Figure 5(a) shows the monetary storage cost per budget, which
when added to the monetary execution cost (proportional
to Figures 4(a) and (b)) explains the trade-offs seen in the
total monetary cost (price) in Figures 4(c) and (d). We delve
deeper into the materializer’s decisions. Figure 5(b) illustrates
the percentage of stored artifacts by type when varying the
storage budget, reflecting the different decisions made by the
materializer as the storage budget increases. The materializer
prioritizes artifacts of type value and then op-state as at
0.1 ˆ dataset size stores 100% of value artifacts and 90% of
op-state artifacts. The next candidates in line are test and train
artifacts. Figure 5(c) shows the average computational cost for
each artifact type. Since every artifact type can be found at any
point in the pipeline, they have similar computational costs,
except for value type artifacts that are typically placed towards
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Fig. 8: Retrieval of artifacts and models, B“0.1

the end of a pipeline. Hence, they incur higher compute cost.
Figure 5(d) shows the storage requirements of each artifact
type: value („Bytes), op-state artifacts’ size („KBytes), and
lastly test and train („MBytes), which are in the same order
as the original raw dataset; train is 3ˆ the size of test as 3:1 is
the split ratio between test and train set. Figure 5(e) shows that
the execution time of fit tasks is 2 and 4 orders of magnitude
higher than transform and evaluate tasks, respectively. As op-
state are produced by fit tasks and can be up to 100ˆ cheaper
than data (test or train), it is usually better to store the op-state.

d) Varying dataset size: Figure 6 reports on the time and
price gain speed-ups with varying size of the raw datasets.
The data set multiplier indicates the dataset size used for
the experiment with storage budget fixed at 0.1 ˆ dataset size

and #pipelines = 50. Collab presents improved time and price
gain speed-ups for larger datasets. However, HYPPO achieves
much better speed-ups ranging from 4.3x up to 8.7x in both
execution time and price gain, even for just 50 pipelines.
With more pipelines, HYPPO performance will only improve
as there will be additional optimization opportunities (e.g.,
sharing, stored artifacts). Hence, HYPPO shows excellent
scalability with respect to pipeline load and dataset size.

2) (Scenario 2) Artifact and model retrieval: The first
scenario assumes a cold start, where history is built with the
pipeline sequence. Here we consider the steady mode of the
system. That is, we start with a history created by 50 pipelines
for each use case, HIGGS and TAXI. This scenario resembles
several practical cases; e.g., users re-evaluate, visualise, and
compare previously computed results. We investigate the time
to retrieve: (a) a set of any artifact type and (b) fitted models.
We investigate the behavior of the methods tested when the
storage budget B is zero and 0.1. When B“0, the materi-
alization strategy operates as Sharing. For the experiments,
we generated five history graphs by executing five different
sequences of 50 pipelines for each use case. We made 1000

random requests of different sizes in each graph and reported
the average over all five graphs per use case per request size.
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a) Zero storage: Figure 7 shows the retrieval time of re-

questing a varying number of artifacts and models for HIGGS
and TAXI (50 pipelines, B“0). Zero storage disables mate-
rialization; thus, the plots depict the benefit of considering
equivalent options when building a plan. Without materializa-
tion, Collab performs as Sharing, showing a speed-up up to
1.2x for HIGGS and 1.5x for TAXI. HYPPO offers superior
performance, from 3.7x to 3.5x for HIGGS and TAXI, respec-
tively. Training models have a higher overall computation time
than random artifacts. As this time is not shared, the benefits
from sharing computations decrease when we request models.
Yet, HYPPO achieves a 50% retrieval time even when models
are requested. Note that requesting one artifact calls for the
discovery of the best execution plan. Leveraging alternative
plans, HYPPO achieves up to 3.7x speed-up.

b) 0.1 storage: Figure 8 shows the retrieval time of
requesting a varying number of artifacts and models for
HIGGS and TAXI. Here, we use 50 pipelines and B“0.1.
Since Bą0, materialization is enabled for both Collab and
HYPPO and offers them both significant speed-ups. The
benefits here come primarily from the artifacts/models stored.
HYPPO and Collab store 83% and 55% (HIGGS) and 64%
and 54% (TAXI) of the total artifacts, respectively. HYPPO
effectiveness is due to its ability to identify equivalent artifacts
and make better use of B. Note that HYPPO achieves larger
coverage in HIGGS as this dataset is 3x bigger than TAXI, so
its B (10% of the dataset size) is larger too.

3) (Scenario 3) Advanced analysis: Many users in the
TAXI competition [52] employ model ensemble learning oper-
ators, which use trained models and extend previous pipelines.
Here, we start with a History created by 100 TAXI pipelines
and generated additional workloads of various #pipelines
(from 10 to 100) that use models trained in the past, similar to
the ones found in [52], that leverage ensemble operators such
as StackingRegressor and VotingRegressor. Figure 9(a) shows
that in this scenario, HYPPO achieves a speed-up up to 50x,
whilst Collab has a moderate speed-up of up to 1.4x.

4) (Scenario 4) Optimization overhead: Figure 9(b) reports
on the execution time of the optimization methods for various
x#pipelines,#Hnodesy pairs. We observe that HYPPO runtime
scales gracefully with increasing the complexity of the search
space (History size). On the other hand, Collab’s runtime
increases rapidly with more complex configurations, which
questions its value in practical scenarios.

5) Scalability: To investigate the scalability of HYPPO in
finding the optimal plan, we developed a synthetic hypergraph
generator, which has two parameters: #artifacts (n) and #alter-
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Fig. 10: Optimization runtime varying (a) n, and (b) m

natives per artifact (m). We start by generating pipelines, akin
to our two usecases, until the node count reaches n. Then, we
introduce additional edges to nodes to satisfy degree m. Nodes
lacking outgoing edges are designated as request targets T. We
assess the performance of our algorithms, HYPPO-STACK
and HYPPO-PRIORITY, against COLLAB-E, an approach
that generates a DAG for each combination of alternatives,
and executes the Collab reuse algorithm for each of them.
COLLAB-E, in contrast to COLLAB, finds the optimal plan
under equivalences, as do the HYPPO variants.

Figure 10(a) presents the runtime of the methods across
various graph sizes, denoted as rn, ℓ̄s pairs, where ℓ̄ is the
average maximum path length, while keeping the number of
alternatives at m “ 2. (We report the average of 10 executions.)
The exhaustive nature of COLLAB-E makes it impractical,
as it takes more than an hour to find the best plan in a
graph of 30 artifacts with a length not greater than 7. In
contrast, the HYPPO variants require less than a few minutes
even for big pipelines of length up to 14, with HYPPO-
PRIORITY being more scalable. In the plot, we also draw
the complexity functions Opmn

q, which represents exhaustive
search, and Opmf¨ℓ

q, which concerns the OPTIMIZE algorithm;
we anchor these functions at the first value of COLLAB-E and
HYPPO-STACK, respectively. Interestingly, all methods scale
roughly as their theoretical complexity predicts.

In Figure 10(b), we vary the number m of alternatives while
keeping the number of artifacts fixed at the largest value n=4
where COLLAB-E executes within one hour. COLLAB-E does
not scale well, while HYPPO presents excellent scalability.

VI. CONCLUSION

This work presented HYPPO, a system that exploits equiv-
alences among artifacts and tasks to reveal reuse opportunities
beyond materialization from historical ML pipeline executions.
Given an ML pipeline, HYPPO returns an optimized exe-
cution plan. It uses a hypergraph representation of pipelines
and the history to (a) search for an optimized execution plan,
and (b) decide what artifacts to materialize. An evaluation on
a variety of use-cases shows that HYPPO finds optimized
execution plans that are up to two orders of magnitude faster
and cheaper than the original pipeline.
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