Building User Trust in Recommendations via Fairness and Explanations

Keynote at HAAPIE 2020 in conjunction with ACM UMAP 2020

Dimitris Sacharidis TU Wien dimitris@ec.tuwien.ac.at

Trust in Al Systems

- COMPAS estimates the likelihood of a criminal to reoffend
 - used by **judges** in the US to guide their decisions
- can we trust such a system?
- ProPublica analyzed COMPAS predictions and found bias against blacks:
 - blacks are almost twice as likely as whites to be labeled a higher risk but not actually reoffend
 - whites are much more likely than blacks to be labeled lower risk, but actually reoffend

How do people feel about Al systems?

- survey of 5,000 consumers by Pegasystems (34% say they interact with AI systems)
- Al not trustworthy
 - only 9% very comfortable interacting with AI
- Al is biased
 - 53% say it's possible for AI to show bias in its decisions
- Al cannot utilize morality
 - 56% don't believe it is possible to develop AI that behaves morally

How comfortable are you/would you be with a business using Artificial Intelligence to interact with you?

Ethical principles in Al systems

- review of 84 AI ethics guidelines [2019 Nature Machine Intelligence, A. Jobin et al.]
- transparency + fairness are the two most popular and important principles
- trust is the "end goal"

Ethical principle	Number of	Included codes
	documents	
Transparency	73/84	Transparency, explainability, explicability, understandability,
		interpretability, communication, disclosure, showing
Justice & fairness	68/84	Justice, fairness, consistency, inclusion, equality, equity, (non-)bias,
		(non-)discrimination, diversity, plurality, accessibility, reversibility,
		remedy, redress, challenge, access and distribution
Non-maleficence	60/84	Non-maleficence, security, safety, harm, protection, precaution,
		prevention, integrity (bodily or mental), non-subversion
Responsibility	60/84	Responsibility, accountability, liability, acting with integrity
Privacy	47/84	Privacy, personal or private information
Beneficence	41/84	Benefits, beneficence, well-being, peace, social good, common good
Freedom &	34/84	Freedom, autonomy, consent, choice, self-determination, liberty,
autonomy		empowerment
Trust	28/84	Trust
Sustainability	14/84	Sustainability, environment (nature), energy, resources (energy)
Dignity	13/84	Dignity
Solidarity	6/84	Solidarity, social security, cohesion

Ethical principles in Al systems

- 4 ethical principles
 - "Ethics guidelines for trustworthy AI" [2019 European Commission]
- Respect for human autonomy
 - "leave meaningful opportunity for human choice"
- Prevention of harm
 - "protect human dignity as well as mental and physical integrity"
- Fairness
 - "ensure equal and just distribution of both benefits and costs"
- Explicability
 - "decisions explainable to those directly and indirectly affected"

Agenda

- Fairness
- Explanations
- Explanations + Fairness

Fairness in Recommendations

What is Fairness?

- fairness is a highly overloaded term
 - it can mean different things to different people in different contexts
- Dictionary: "the state of being free from bias or injustice"
- Political Science: "distributive justice discusses fair allocation of resources among diverse members of a community"
 - "A Theory of Justice" by J. Rawls (American philosopher)
 - "justice as fairness"; "social cooperation should be fair to all citizens regarded as free and as equals"
 - but what is a fair allocation?
 - equality of outcome: each person gets the same amount
 - equality of opportunity: equal grounds for competing for resources
 - social welfare: what benefits the society the most

What is Fairness?

- Legal Systems: "fairness as non-discrimination"
 - disparate treatment: intentional discrimination on protected groups (defined on race, color, gender, etc.); not "color-blind"
 - e.g., only black applicants are required to take a pre-employment assessment test
 - disparate impact: a procedure that has disproportionate impact on protected groups
 - e.g., all applicants are tested but only blacks are eliminated based on the results of the assessment.
 - affirmative action: promote non-discrimination and support historically disadvantaged groups; quota systems
 - e.g., to address gender imbalance in STEM

What is Fairness?

- many definitions even in the context of AI/ML
 - separate notions in classification, ranking, recommendation
 - e.g., 21 fairness definitions by [2018 FAT* A. Narayanan]
- one abstract definition to rule them all
- fairness is the absense of harmful discrimination (or bias)
- sidenote: not all forms of discrimination and bias are harmful
 - recommenders earn their living by personalization (=discrimination)
 - perhaps differentiation is a better term for non-harming discrimination/bias

Let's break it down

• fairness is the absense of harmful discrimination

• from whom?

• the AI/ML system, and by extension from the system owner

why?

 could manifest due to decisions made by the system owner (intentional or not), due to the training data, etc. (sources of discrimination)

Let's break it down

fairness is the absense of harmful discrimination

what is discrimination?

- difference in the treatment and/or impact of people
- this means that two or more individuals or groups of people are compared

what is harm?

- categorization by [2017 NIPS K. Crawford]; boundaries not always clear
- representational harms: e.g., stereotyping, racial/gender miscategorization
- distributional harms: unfair distribution of a resource

Fairness in Recommendations

 claim: almost all fairness concerns raised in the context of recommenders are about distributional harms

- fairness is the fair distribution of a resource
 - fair for whom?
 - when is the distribution fair?
 - distribution of what resource?

For Whom?

• recommender systems are multi-sided, with multiple stakeholders

- in the context of fairness, two important sides [2017 FATML R. Burke]
- consumers/end-users/receivers of recommendations
- providers/owners/producers of items being recommended
- harms can be for consumers, or providers, or both (e.g., reciprocal recommendations)
 - harms can be financial, ethical, legal, depending on the type of resource

For Whom?

- how do you compare? (to see if discrimination exists)
- individual fairness: compare two or more individuals that are similar (e.g., in terms of demographics, qualifications)
 - e.g., do two similar-qualified people get the same job offers?
 - within-groups
- group fairness: compare different groups of people; grouping attributes (e.g., demographics) often called sensitive or protected
 - e.g., are blacks receive similar recommendations as whites?
 - across-groups

When is the distribution fair?

- it defines when (distributional) harm occurs
- it depends on the resource
- fair typically means:
 - equal or uniform distribution
 - proportional to some given target (fixed, dynamic, etc.)
 - e.g., affirmative action
- one typically defines what perfect fairness means
- and measures unfairness by how far from being perfect you are.
 - e.g., Gini coefficient, measures of statistical divergence

Of What?

what are the resources that can be distributed by a recommender?

two main resource types

- utility: how relevant/accurate are the recommendations
 - requires feedback

• **exposure**: how much the recommender exposes/promotes items to users

Fairness of Utility

- utility is typically measured from the consumer viewpoint
 - hence, often (but not always!) associated with consumer fairness
- consumer viewpoint [2017 NIPS S. Yao et al.]
 - rating prediction accuracy should be balanced between protected and nonprotected consumer groups
- provider viewpoint [2019 KDD A. Beutel et al.]
 - ranking accuracy should be balanced between protected and non-protected providers groups

Fairness of Exposure

- exposure is typically measured from the provider viewpoint
 - hence, often (but not always!) associated with provide fairness

- consumer viewpoint [2018 FAT* R. Burke et al.]
 - number of recommendations of desired items should be balanced between protected and non-protected consumer groups

- provider viewpoint [2019 RecSys W. Liu et al.]
 - number of recommendations from each provider should be equal

Taxonomy of Fairness in Recommendations

Accuracy **Exposure** of What? prediction accuracy equal exposure [2017 NeurIPS] [2018 FAT* R. Burke et al.] ranking accuracy [2018 FAT * M. Ekstrand et exposure coverage [2018 CIKM, 2019 RecSys] ranking accuracy equal exposure [2019 KDD] [2018 FAT * R. Burke et al.]

calibrated exposure

[2018 RecSys]

Consumer

for Whom?

Provider

some representative work:

[2017 NeurIPS S. Yao et al.] Beyond Parity: Fairness Objectives for Collaborative Filtering

[2019 KDD A. Beutel et al.] Fairness in Recommendation Ranking through Pairwise Comparisons

[2018 FAT * M. Ekstrand et al.] All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness

[2018 CIKM R. Mehrotra et al.] Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems

[2018 FAT * R. Burke et al.] Balanced Neighborhoods for Multisided Fairness in Recommendation

[2019 RecSys W. Liu et al] *Personalizing Fairness-aware Re*ranking for Microlending

[2018 RecSys H. Steck] Calibrated Recommendations

Explanations of Recommendations

Explaining Recommendations

• recommendations are everywhere – explanations are there as well!

Related to items you've viewed

Frequently Bought Together

Customers Who Bought This Item Also Bought

Recommended for You Based on

Popular on Netflix

Trending Now

Watch It Again

Because you watched Dark

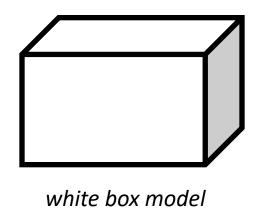
Why Explain?

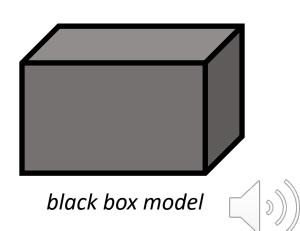
Purpose	Description	
Transparency	Explain how the system works	
Effectiveness	Help users make good decisions	
Trust	Increase users' confidence in the system	
Persuasiveness	Convince users to try or buy	
Satisfaction	Increase the ease of use or enjoyment	
Education	Allow users to learn something from the system	
Scrutability	Allow users to tell the system it is wrong	
Efficiency	Help users make decisions faster	
Debugging	Allows users to identify that there are defects in the system	

[1984 B. G. Buchanan et al.] Explanations as a Topic of AI Research, in Rule-based Systems
[2017 UMUAI I. Nunes et al.] A systematic review and taxonomy of explanations in decision support and recommender system
[2007 ICDE_w N. Tintarev et al.] A survey of explanations in recommender systems.

White-Box vs Black-Box Models

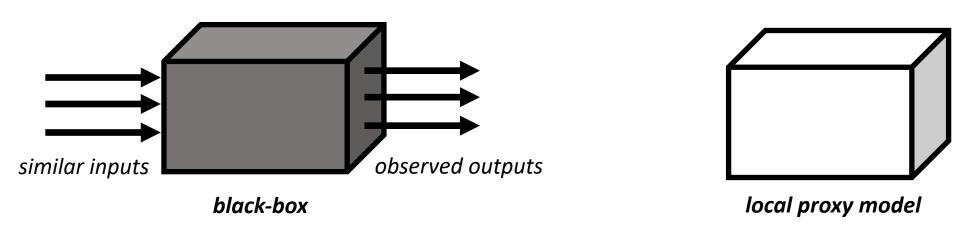
- an explanation describes how the system reaches a decision
 - requires access to the inner workings of the system
 - a white box model
- but often the recommender is a black box model
 - no knowledge of inner workings
 - we can only try to **interpret** how it reaches a decision
- often distinction between explanation and interpretation of a model





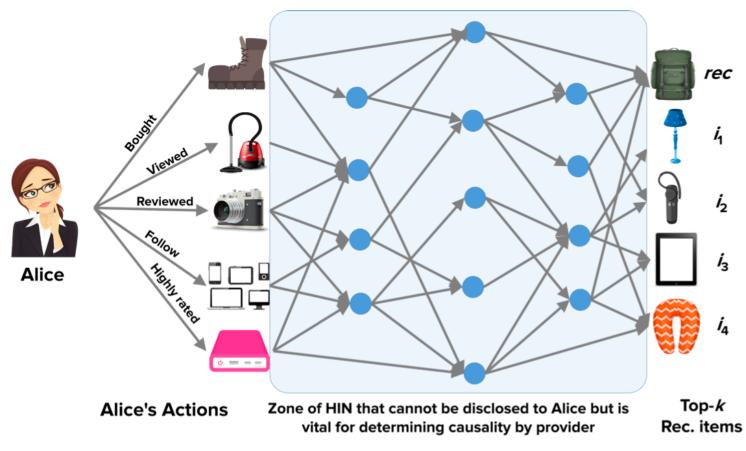
Local Proxy Models

- cannot see inside the black box, but can observe its inputs and outputs
- to explain a given input-output pair (preferences-recommendations)
- 1. push similar inputs and observe outputs
- 2. fit a transparent local proxy model to the observed input-output pairs
- use the local proxy model to generate explanations for the given inputoutput pair



Counterfactual Explanations

- consider a causal relationship: "If X had not occurred, Y would not have occurred"
- it explains why Y occurred: it's because X occurs
- a counterfactual explanation of a specific recommendation describes the smallest change to preferences that results in not seeing that recommendation
 - Example: to explain "Why was I recommended item Y?" look for smallest changes in preferences so that item Y no longer appears in the recommendations
- preferences = factual
- change to preferences = counterfactual



Alice: Why did I receive this recommendation "Jack Wolfskin backpack"?

PRINCE: You **bought** "Adidas Hiking Shoes";

You reviewed "Nikon Coolpix Camera" with "Sleek! Handy on hikes!";

You **rated** "Intenso Travel Power Bank" highly.

If you had not done these actions:

"iPad Air" would have replaced "Jack Wolfskin backpack".

Explanations + Fairness

Towards Fairness-Aware Explanations

- the user (consumer or provider) may wonder if they are treated fairly
- if they are treated **fairly**, how can the system **assure** the user?
 - provide fairness assurances
- if they are treated unfairly, how can the system explain itself?
 - provide unfairness explanations
 - further investigate whether the unfairness violation can be justified (was it intentional?)
- fairness-aware explanations
 - fairness assurances and unfairness explanations

Towards Fairness-Aware Explanations

• the paradigm of counterfactual explanations may be useful but there are some key **differences**

desired output is not unique

- in conventional explanations, the desired output is the recommendation list without a specific item
- in fairness-aware explanations, the desired output is a more fair output, which can be achieved in many ways

there are multiple instances

- in conventional explanations, there is a single instance to explain
- fairness definitions are often based on aggregating multiple instances

conclusion

Take Away

• to build user **trust** in recommender systems

 you need to be able to offer explanations to and ensure fairness of multiple stakeholders

• interesting **research directions** to explore, also at the **intersection** of explainability and fairness.

thank you

