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ABSTRACT

In many settings, it is required that items are recommended to a
group of users instead of a single user. Most often, when the deci-
sion criteria and preferences of the group as a whole are not known,
the gold standard is to aggregate individual member preferences or
recommendations. Such techniques typically presuppose some pro-
cess under which group members reach consensus, e.g., least misery,
maximum satisfaction, disregarding any uncertainty on whether
this presumption is accurate. We propose a different approach that
explicitly models the system’s uncertainty in the way members
might agree on a group ranking. The basic idea is to quantify the
likelihood of hypothetical group rankings based on the observed
member’s individual rankings. Then, the systems recommends a
ranking that has the highest expected reward with respect to the
hypothetical rankings. Experiments with real and synthetic groups
demonstrate the superiority of this approach compared to previous
work based on aggregation strategies and to recent fairness-aware
techniques.
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1 INTRODUCTION

In group recommender systems, the goal is to provide a recommen-
dation to a group of people, e.g., to friends planning their summer
vacation destination [1], or to a family deciding on a TV program
to watch [24]. In the case of persistent, long-standing groups, the
system can derive a profile of the group, e.g., from a history of group-
item interactions, and essentially treat the group as a virtual user.
The most interesting setting is when the system must recommend
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Figure 1: Group recommendation task

to an ad-hoc, ephemeral group, for which no historical information
is known. This work focuses on group recommendations for ad-hoc
groups, and proposes a model of the system’s uncertainty regarding
how group members might decide on items.

We formulate the group recommendation task as follows. For
each user in the group, we assume the system knows her member
ranking on a subset of items. For example, member rankings can
be extracted via preference elicitation and feedback, or estimated
with collaborative filtering or some other technique. We define
the group ranking as the “optimal” ranking of a subset of items
for the group, i.e., the ranking members would agree on if they
would convene, had perfect knowledge, and were able to reach a
consensus. Of course, such a scenario is only hypothetical, and thus
the group ranking is unknown to the system. The goal of a group
recommender is to propose a group recommendation list that, to
the best of the system’s knowledge, matches the unknown group
ranking.

Figure 1 illustrates the task of a group recommender. Assume a
group of three users, {a, b, c}, and three items 1, 2, 3. Each member
has individual preferences on these items, that are expressed as the
three depicted group member rankings; for instance, user a ranks
1 the highest, followed by 3 and 2. The shaded part of the figure
illustrates the unknown/hypothetical group decision process. The
three users reach a consensus on their ideal group ranking [1, 3, 2].
The unshaded part of the figure presents the group recommender
as a black box that accepts as input the member rankings, and
outputs a group recommendation list. In our depiction, the system
employs some group recommendation algorithm and produces the
list [1, 2, 3].

There has been a plethora of group recommendation algorithms
for a thorough overview of this research area refer to [6, 9, 14].
Briefly, the existing approaches for ad-hoc groups can be classified
as follows. Profile aggregation methods, e.g., [3, 13, 16, 22, 24],
merge the profiles of members to create a group profile upon which
to make recommendations. Score aggregation methods, e.g., [1, 14,
17], are inspired by social choice theory and aggregate predicted
member rankings; in some cases external factors are also used taken
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Table 1: States, Actions, and payoffs

Action

State Prob 1 o3l [1L,3,2] (21,3 (231 [31,2 [3.21]

[1,2,3] 2/9 1 1/3 1/3 -1/3 -1/3 -1
[1,3,2] 23 1/3 1 -1/3 1/3 -1 -1/3
[2,1,3] o 1/3 -1 1 -1 1/3 -1/3
[2,3,1] o -1/3 1/3 -1 1 -1/3 1/3
[3,1,2] 2/3 -1/3 -1 1/3 -1/3 1 1/3
[3,2,1] o -1 -1/3 -1/3 1/3 1/3 1

Expected payoffs 2/9 2/27 2/27 -2/27 -2/27 -2/9

into account [7, 12, 15, 20, 21]. Rank aggregation techniques, e.g., [2],
fuse the predicted member rankings considering only the relative
order of items. More recently, the focus has been on fairness-aware
methods, e.g., [11, 18, 23], that seek to recommend items so that to
minimize dissatisfaction among members.

The common theme among previous work is that it makes a
presumption, explicit or not, on how a group would decide, and
produces the group recommendation list accordingly. For instance, a
recommender following the least-misery principle assumes that the
group is only satisfied as much as its least satisfied member, and thus
ranks items decreasingly by their minimum utility among members.
In practice, user studies [5, 13] have demonstrated that groups
may reach consensus on group rankings that differ substantially to
those produced by the aggregation strategies typically employed by
group recommenders. Despite these observations, existing group
recommenders are rigid and do not account for uncertainty in the
decision process.

In this work, we model the group recommendation task as a
decision theoretic problem under structured uncertainty. Specifi-
cally, we see the optimal group ranking as the uncertain state of
the world. In the example of Figure 1, group ranking [1, 3, 2] is
a state representing the world in which the group agrees to this
particular ranking. Moreover, we assume that uncertainty is prob-
abilistic, meaning that each state corresponds to a possible world
that occurs with some probability. For example, state [1, 3, 2] may
occur with probability 3/7. Such state probabilities are computed
using the external information available to the system — in our
case, the member rankings — in a manner we discuss in Section 2.

Furthermore, we see the task of producing a group recommen-
dation list as the action the recommender must take. In the exam-
ple of Figure 1, the recommendation list [1, 2, 3] is the action of
the system. Note that, in our model, both a state and an action
correspond to rankings; the difference is that the former is the
unknown/hypothetical ground truth of the state, while the latter
is the system’s output. For a specific state, an action is associated
with a payoff. In our model, the payoff of a group recommenda-
tion list captures its similarity with the state’s ground truth, i.e.,
the group ranking. For example, in Figure 1, action [1, 2, 3] for the
state [1, 3, 2] leads to a payoff of 1/3, derived as the Kendall’s tau
similarity between the two rankings.

Under this probabilistic formulation of the uncertainty in the
group recommendation task, the system’s optimal action is the one
that maximizes the expected payoff, i.e., the probability-weighted
average of the payoffs an action receives across all states. This
translates into the recommender outputting the list that has the
highest similarity to the group ranking in expectation.

Table 1 presents our model for the recommendation task of Fig-
ure 1. As there are only three items, there are six possible rankings
and thus as many states and actions. Each state is accompanied
by its probability. While we defer details for Section 2, note that
the three states that place item 2 before 1 have zero probability;
this is because no member prefers 1 over 2 in their rankings. Also
note that states [1, 3, 2] and [3, 1, 2] are the most probable states as
they exactly match one member’s ranking (a’s or ¢’s) and extend
another members’s ranking (b’s).

The depicted payoffs for each action-state pair are computed
using Kendall’s tau similarity, ranging from —1 to 1. The expected
payoffs for each action are depicted in the last row, where action
[1,2,3] is found to have the highest value and is thus the output of
our group recommender. It is worth noting that although rankings
[1,3,2] and [3, 1, 2] have the highest probability of being group
rankings (as states), they have less expected payoff (as actions)
when all possible states of the world are considered. This is also the
strength of our model: it does not recommend the most probable
ranking, but hedges its bets accounting for the uncertainty in the
group decision process.

The remaining of this paper is structured as follows. Section 2 de-
scribes our model of the group recommendation task, and explains
how it used to make recommendations. Section 3 evaluates our
group recommender against related work, and Section 4 presents
our conclusions.

2 PAYOFF-BASED GROUP RECOMMENDER

Section 2.1 introduces the model employed by our recommender,
and Section 2.2 presents how group recommendations are derived.

2.1 A Model of Uncertainty for the Group
Recommendation Task

Our group recommender is based on a model capturing the un-
certainty of the group recommendation task. The key element of
this model is the notion of state probabilities. Once they are deter-
mined, the expected payoffs can be straightforwardly computed
and the appropriate action found. In what follows, we explain how
state probabilities are defined. Briefly, the pairwise preferences for
each group member are extracted from the sole input of the recom-
mender, the members rankings. Then, for each pairwise preference
we assign a probability, which in turn defines the probability of
each possible ranking. We start the discussion by defining pair-
wise preferences and rankings in general, and then introduce their
probabilities of occurrence when considered in the context of a

group.

Pairwise Preferences and Rankings. We assume a set I of items.
A pairwise preference of item i over j is denoted as i <. Items i, j
are equi-preferred if i <j and j <i. On the other hand, items i, j are
incomparable if neither i <j nor j<i hold, in which case we write
i+j. A preference set is a set of pairwise preferences. For example,
preference set {1<2,1<3} says that among the items, 1 is the most
preferred, while 2 and 3 are incomparable.

A ranking is a preference set that is a total order on a subset
of items, i.e., the pairwise preferences define a transitive, antisym-
metric, and complete (there exists a preference between each pair



Table 2: Member Rankings and Preference Probabilities

(a) Member Rankings (b) Probabilities for Group Pairwise Preferences  (c) Probabilities for Group Preference Sets
Member Pairwise Preferences Pref. Prob. Pref. Prob. Pref. Prob. Preference Set Prob. Preference Set Prob.
a 1<2,1<3,3<2 1<2 1 1<3  1/3 2<3 0 {1<2} 1/9 {1<2,3<2} 2/9
b 1<2 2<1 0 3<1 1/3 3<2  2/3 {1<2,1<3} 1/9 {1<2,1<3,3<2} 2/9
c 3<1,1<2,3<2 1+2 0 1+3  1/3 2+3  1/3 {1<2,3<1} 1/9 {1<2,3<1,3<2} 2/9

of items) relation. For example, preference set {1<2,1<3,2<3}
is a ranking, denoted as [1, 2, 3]. A ranking is compatible with a
preference set, if the latter is a subset of the former. For example,
ranking [1, 3, 2] is compatible with preference set {1<2,1<3,3 <2},
as is with {1<2}.

Table 2a shows the pairwise preferences contained in the rank-
ings of the three group members of Figure 1.

Group Pairwise Preferences, Group Rankings, and Probabil-
ities. We assume a group of users, where for each group member
we know her pairwise preferences. As explained, member pairwise
preferences are straightforwardly derived from a ranking; note
that there are even systems that specifically elicit such types of
preferences [4].

A pairwise preference i < j for the group (unlike for a user)
is uncertain, and can be expressed with some probability Pr(i <
J)- Here, we assume that the probability is simply the fraction of
members that express the corresponding pairwise preference. Of
course, more elaborate mechanisms for computing probabilities
are possible; e.g., when a group has provided some feedback, or
when group roles, social influence strength, etc. among members
are known. Table 2b depicts the probabilities for each among the
six pairwise preferences. In addition, the table also depicts the
probability Pr(i + j) of incomparability for two items computed as
1-Pr(i<j)—Pr(j<i).

Using the probabilities of pairwise preferences, we can define
the probability of a preference set as the product of the probabilities
of pairwise preferences it contains as well as all incomparability
relations it implies.! For instance, the probability of preference set
{1<2,1<3} is computed as Pr(1<2) - Pr(1<3)- Pr(2+3) = 1/9.
Table 2c shows the probabilities of preference sets; all sets not
depicted have zero probability. Note that the probabilities naturally
sum to one.

Finally, we can define the probability of a group ranking in the
following manner. Recall that a ranking is compatible with multiple
preference sets. Equivalently, a preference set may be completed
in different ways to define a ranking. Therefore, the probability
with which a group ranking occurs is the probability that one
among its compatible preference sets occurs. This probability is thus
computed as the sum of probabilities for all compatible preference
sets. Intuitively, a ranking can have multiple interpretations, its
compatible preference sets, and each one contributes separately to
the ranking’s probability.

Table 3 depicts the probabilities for all possible rankings of the
three items. For instance, ranking [1, 2, 3] has only two compatible
preference sets with nonzero probability, shown in the first row. As
each occurs with probability 1/9 (see Table 2c), the probability of

! The underlying assumption here is that preferences are independent, which is the
same as what pairwise learning methods (e.g., [19]) make.

[1,2,3]is 2/9. Note that because rankings are not mutually exclusive
events (e.g., [1, 2, 3] and [1, 3, 2] share preference set {1<2}), their
probabilities may sum to over one.

States, Actions, and Payoffs. A state and an action is a ranking
on a subset of N items. The probability of a state is the probability
of the ranking associated with it. The payoff of an action given a
state is the similarity between the action and state rankings. In this
work, we quantify payoff using Kendall’s tau similarity, which is a
measure of how many item pairs are ranked concordantly; however,
other metrics, including non-symmetric ones like NDCG, could be
used.?

The expected payoff of an action is the state probability weighted
average of its payoffs. The goal of the group recommender is to
identify the action that has the maximum expected payoff.

2.2 Making Group Recommendations

The process of deriving the state probabilities can be expensive
when we need to consider a large number of items; note that there
exist O(|I|?) item pairs, O(3u|2) preference sets, and O(|I|!) rank-
ings. In what follows, we describe an algorithm that avoids enumer-
ating all item-pairs, and instead directly estimates the probabilities
of rankings. The key observation is that the systems does not need
to know the probabilities for all pairwise preferences, particularly
when it will only recommend a list of N < |I| items. Rather, what
is important is the ability to identify those items that are likely to
be among the top-N. The group recommendation algorithm entails
three steps, (1) identify the items that are most likely to rank high in
group rankings, (2) generate some of their permutations and com-
pute their probabilities, and (3) deriving the maximum expected
payoff ranking.

Identify items that most likely rank high. Our goal is to iden-
tify a basis of N items, which will be eventually recommended. Let
Pr(i; k) denote the probability that item i ranks among the top-k
items in the (unknown) group ranking, and let I} represent the
subset of items with nonzero Pr(i; k). Note that there may exist
items with zero such probability; in our example, item 2 has zero

2 Another option would be to measure similarity directly between preference sets (e.g.,
[10]) instead of rankings.

Table 3: Probabilities of Group Rankings

Ranking Compatible Preference Sets Prob.
[1,2,3] {1<2}, {1<2,1<3} 2/9
[1,3,2] {1<2}, {1<2,1<3}, {1<2,3<2},{1<2,1<3,3<2} 2/3
[2,1,3] - 0
[2,3,1] - 0
[3.1,2]  {1<2}, {1<2,3<1}, {1<2,3<2}, {1<2,3<1,3<2} 2/3
[3.2,1] - 0




probability of being the top item (k = 1), as all three members pre-
fer 1 over 2. Clearly, I; monotonically increases with k: if an item
has nonzero probability for ranking at k, it certainly has nonzero
probability ranking at any k” > k. Therefore, for any item there
exists a minimal value of k for which its probability is nonzero. In
our example, item 2 has nonzero probability for ranking second, an
increase over the zero probability for ranking first; to see this note
that there exists a group ranking, [1, 2, 3], with nonzero probability
(see Table 3).

Motivated by this observation, we select the basis of N items by
finding the lowest k such that |I;| > N, and then picking among
I} those items with the highest probabilities Pr(i; k). The difficult
task is how to estimate the Pr(i; k) probabilities, without exhaus-
tively considering all possible group rankings, which we address
as follows. Each member ranking can be seen as assigning utility
scores to items; the simplest way is via Borda counts. Therefore, an
item can be represent by its utility vector, where each coordinate
corresponds to a group member’s utility. It is easy to verify that any
vector-valued function that aggregates utilities and is monotonic
along every coordinate (an increase in some utility score, implies a
non-decrease in the function’s output) induces a group ranking of
items with nonzero probability. For our purposes, we simply use a
linear vector-valued function with random weights to generate a
large number (but much less than N!) of possible group rankings.
Then, the probability Pr(i; k) of an item i ranking within the top-k
is estimated as the fraction of the generated rankings that place i
in the top-k.

Therefore, the procedure for selecting a basis of N items goes
as follows. Starting with k = 1, we progressively increase its value
until we get at least N items with nonzero Pr(-; k) probability. For
each k, we estimate the item probabilities using the aforementioned
method of generating random rankings. Once the smallest k* such
that |Ip«| > N is found, we pick the N items with the highest
Pr(-;k*) probabilities.

Generate rankings and compute their probabilities. In the
previous step, we have identified a basis of N items, and for each
of them computed the probability of ranking within the top-k*, for
some value of k* appropriately derived. Next, we generate some
rankings and estimate their probability. Specifically, we construct a
ranking of the basis items by iteratively placing items at descending
position. For position n, we draw a single item from the remaining
N —n+1 basis items with selection probabilities that are proportional
to the items’ top-k* probabilities Pr(-; k*). Thus items with high
Pr(-; k) are more likely to rank high in the generated ranking.

For each generated ranking, we assign a likelihood score that
is the product of the aforementioned selection probabilities of the
items. This likelihood serves as an estimate of the unnormalized
probability of the state corresponding to this ranking.

Derive the maximum expected payoff ranking. From the pre-
vious step, we can now populate a partial payoff table involving
the generated rankings acting as states and actions. To determine
the best group ranking to return, we propose two approaches. The
first, denoted as MEP, is to select the ranking that has the highest
expected payoff with respect to the generated rankings and de-
rived state probabilities. In other words, MEP assumes the payoff

table is complete and state probabilities accurate, and makes the
optimal choice. The second approach, termed MEP*, admits that
the payoff table is only partial and creates a ranking by fusing all
generated rankings. Specifically, we implement a weighted version
of Borda counting, where the score of each item is the expected
payoff-weighted sum of its Borda counts.

3 EVALUATION

Methods. We compare our payoff-based approaches, denoted as
MEP and MEP*, with score aggregation, rank aggregation, and
fairness-based methods. AVG, LM, and MUL implement the addi-
tive, least-misery, and multiplicative score aggregation strategies,
respectively [14]; we exclude the maximum-pleasure strategy due
to its low performance. BORDA and MEDIAN are two rank aggrega-
tion strategies [2], that assign to an item its average or median rank,
respectively; MEDIAN is preferred over the Spearman’s footrule-
based method of [2] as an approximation of the Kemeny optimal
rank, due to its lowest time complexity. GRF corresponds to the
group rating fairness method of [18], SPG and EPG to the single
proportionality and envy-freeness greedy algorithms of [23], and
GVAR to the greedy variance algorithm of [11].

Data. The first dataset, denoted as TRAVEL [5], contains 60 groups
of 2—4 members, where each user provides a rating, on a 5-point
scale, for 11 travel destinations, and each group jointly agrees on
their top-2 destinations. As member rankings, we use the users’
individual rankings of the 11 items. As hypothetical group ranking,
we take the group’s ranked list of the two favorable items.

The second dataset, denoted as MovieLens, is based on the Movie-
Lens 1M dataset [8]. Groups of size 3—-20 are synthesized under
two schemes: in random, users are chosen uniformly at random,
while in similar, starting from a randomly selected user, the group
is build incrementally by adding the most similar (in terms of mean-
centered cosine similarity) user to the group. Similar to previous
work [11, 18, 23], we use a simple matrix factorization technique to
fill in the missing ratings in the dataset. As member rankings, we
extract the top-N items. For the hypothetical group ranking, we
generate a random ranking according to the framework described
in Section 2.2.

Metrics. The main evaluation metric, and the optimization target
of our methods, is the Kendall’s tau similarity of the recommended
group ranking with the hypothetical group ranking. Recall that our
methods are not restricted to Kendall’s tau, as the payoff can be
defined in terms of any similarity metric between rankings.

As a secondary metric, we use the normalized discounted cu-
mulative gain at rank k (NDCG@k). For this metric, each item
in the hypothetical group ranking should have a relevance score.
As in [11], we use Borda semantics and set the relevance of an
item at position r in the top-N hypothetical group ranking to
N —r+1.Then, DCG@k = Zlle lozgs(rfjrll), where s, is the relevance
score of the item at position r in the recommended group rank-
ing; IDCG@*k is the maximum possible DCG@k; and NDCG@k =
DCG@k/IDCG@k.

The reported values are the averages among the 60 groups in
TRAVEL, and among 100 randomly generated groups in MovieLens.



Table 4: NDCG@2 for TRAVEL

AVG LM MUL BORDA MEDIAN GRF SPG EFG GVAR MEP MEP*

0.434 0.264 0.389 0.384 0.363 0.464 0.438 0.368 0.386  0.488 0.485

Results on TRAVEL. When evaluating against a ground truth
ranking of only two items, Kendall’s tau is not a particularly mean-
ingful metric, as it can only take its two extreme values, -1 and
1. On the other hand, NDCG is meaningful and Table 4 presents
NDCG@?2 for all methods. Our proposals, MEP and MEP* achieve
the best scores, followed by two fairness methods GRF and SPG
that score slightly better than plain AVG.

Results on MovieLens. In the first experiment, we vary the size
of the group from 3 to 20, and ask for the top-20 group recommen-
dations. Figure 2 shows Kendall’s tau similarity for random and
similar groups. A general observation is that the case of similar
groups is easier with all methods achieving higher similarity scores
than for random groups. For all group sizes and types, MEP and
MEP* are the two best methods by a large margin. Among the
aggregation methods, AVG is the best in all cases, a result that is
in accordance to previous work [2, 11]. Among the fairness-based
methods, GVAR has the best performance, and the main reason is
that it weighs fairness and average utility, producing thus rankings
very similar to AVG. Specifically, for groups of 5, MEP and MEP*
have Kendall’s tau similarity of about 0.57 (resp. 0.59) compared
to AVG’s 0.44 (resp. 0.50) and GVAR’s 0.45 (resp. 0.49) for random
(resp. similar) groups.

Figure 3 presents the NDCG@5 metric for the same experiment.
MEP and MEP™ are still the best two methods, but by a smaller
margin. Generally, MEP is slightly better than MEP*, except in the
case of large groups with similar members. Methods AVG and GVAR
are again strong, this time joined by MUL.

Figure 4 fixes the group size at 5 and shows Kendall’s tau sim-
ilarity as we vary the number N of requested recommendations
from 5 up to 50. In all cases, our payoff-aware methods outperform
all competitors, with the margin increasing with N.

Finally, Figure 5 depicts NDCG at various ranks starting from 2
up to 20 when making top-20 recommendations. The finding are
consistent in that MEP and MEP* being the best methods, while
AVG and GVAR closely follow. In terms of NDCG, apparently all
score aggregation strategies perform equally well for similar groups.

Discussion. Our payoff-aware methods outperform the state of the
art in terms of Kendall’s tau similarity, as well as in NDCG, meaning
that the important top ranks of the recommendation lists are quite
accurate. MEP* improves on MEP in the case of large similar groups.
We observe that the simplest possible aggregation strategy, AVG,
is a very strong competitor, especially in small and similar groups.
Fairness methods, with the exception of GVAR, sacrifice accuracy
and perform consistently worse than aggregation strategies.

4 CONCLUSION

This work introduced a group recommendation method that explic-
itly models the uncertainty in the way members might agree on an
appropriate group ranking of items. The basic idea is to compute
probabilities to hypothetical group rankings by observing member’s
individual rankings. Then, the systems recommends a ranking that

has the highest expected payoff with respect to the hypothetical
rankings. Experiments with real and synthetic groups demonstrate
the superiority of this approach compared to previous work based
on aggregation strategies and to recent fairness-aware techniques.
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