
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Ranking and Clustering Web Services using
Multi-Criteria Dominance Relationships
Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, and Timos Sellis, Senior, IEEE

Abstract—As the Web is increasingly used not only to find answers to specific information needs but also to carry out various tasks,
enhancing the capabilities of current Web search engines with effective and efficient techniques for Web service retrieval and selection
becomes an important issue. Existing service matchmakers typically determine the relevance between a Web service advertisement
and a service request by computing an overall score that aggregates individual matching scores among the various parameters in
their descriptions. Two main drawbacks characterize such approaches. First, there is no single matching criterion that is optimal for
determining the similarity between parameters. Instead, there are numerous approaches ranging from Information Retrieval similarity
measures up to semantic logic-based inference rules. Second, the reduction of individual scores to an overall similarity leads to
significant information loss. Determining appropriate weights for these intermediate scores requires knowledge of user preferences,
which is often not possible or easy to acquire. Instead, using a typical aggregation function, such as the average or the minimum of
the degrees of match across the service parameters, introduces undesired bias, which often reduces the accuracy of the retrieval
process. Consequently, several services, e.g., those having a single unmatched parameter, may be excluded from the result set,
while being potentially good candidates. In this work, we present two complementary approaches that overcome the aforementioned
deficiencies. First, we propose a methodology for ranking the relevant services for a given request, introducing objective measures
based on dominance relationships defined among the services. Second, we investigate methods for clustering the relevant services
in a way that reveals and reflects the different trade-offs between the matched parameters. We demonstrate the effectiveness and the
efficiency of our proposed techniques and algorithms through extensive experimental evaluation on both real requests and relevance
sets, as well as on synthetic scenarios.

Index Terms—Web services matchmaking, ranking, clustering, skyline.

F

1 INTRODUCTION

W EB services are software entities that have a well-
defined interface and perform a specific task. Typical

examples include services returning information to the user,
such as news or weather forecast services, or services altering
the world state, such as on-line shopping or booking ser-
vices. A Web service is formally described in a standardized
language (WSDL). The service description may include the
names and types of input and output parameters, preconditions
and effects, as well as Quality of Service (QoS) attributes, such
as price, execution time, availability, and reputation.

As Web services and service providers proliferate, there
will be a large number of candidate, and likely competing,
services for fulfilling a desired task. Hence, effective service
discovery mechanisms are required for identifying and retriev-
ing the most appropriate services. Assume the existence of a
repository that contains a large number of advertised service
descriptions. In a typical scenario, a user provides a complete

• D. Skoutas is with the L3S Research Center, Hannover, Germany.
skoutas@l3s.de

• D. Sacharidis is with the Institute for the Management of Information
Systems, Greece, and the Hong Kong University of Science and Technology,
Hong Kong.
dsachar@imis.athena-innovation.gr

• A. Simitsis is with the HP Labs, Palo Alto, USA.
alkis@hp.com

• T. Sellis is with the Institute for the Management of Information Systems,
and the National Technical University of Athens, Greece.
timos@imis.athena-innovation.gr

definition of the requested service, and issues a discovery
query. The repository, then, employs a matchmaking algorithm
to identify services relevant to the user’s request. Note that,
perfect matches, i.e., services with the same description as the
request, are seldom found. Furthermore, even when a perfect
match exists, it may not constitute the most desirable option,
e.g., the service is currently unavailable. For these reasons,
given a request, the matchmaking algorithm needs to consider
a potentially large number of partial matches, and to select the
best candidates among them.

To effectively deal with the large number of candidates,
it is imperative that the identified matches are provided in
a useful form. For this purpose, we examine two distinct
methods: ranking and clustering. Ranking entails assigning
a score to each advertisement, quantifying its suitability for
the given request. Given that users typically view only a few
top search results, it is important that useful results appear
high in the list. Similarly, in fully automated scenarios, where
a software agent automatically selects and composes services
to achieve a specific task, only the few top ranked results are
typically considered. On the other hand, clustering organizes
advertisements so that services within a cluster provide similar
matches with respect to the request. Since several parameters
are involved in the matchmaking process, finding a service that
provides a high degree of match for all parameters is difficult;
instead, it is often needed to decide between different trade-
offs. Clustering the search results allows the user to identify
an interesting advertisement and then browse similar results,
i.e., those found within the same cluster.



2 IEEE TRANSACTIONS ON SERVICES COMPUTING

Both ranking and clustering require as a first step the
matchmaking algorithm to assign to each considered parameter
a parameter degree of match (PDM) with respect to the
requested service. Then, a service degree of match (SDM)
can be computed as an aggregate of the individual PDMs.
Various approaches for combining PDMs exist. One direction
is to assign weights to individual scores [1], determined
through user feedback. Appropriate weights are chosen either
by assuming a-priori knowledge of the user’s preferences or
by applying machine learning techniques. In the lack of such
information, methods are often pessimistic, computing the
overall service similarity based on the lower degree of match
among parameters. However, considering an aggregate SDM
is inappropriate for ranking or clustering the matchmaking
results, since a single criterion is a very coarse metric for
evaluating composite entities, such as services. Inevitably,
these approaches lead to large information loss as the PDMs of
a service may vary considerably. SDMs obscure the inherent
trade-offs offered by different advertisements. Consequently,
SDM-based ranking may assign very low ranks, for example,
to services with a single bad matching parameter. Similarly,
SDM-based clustering fails to construct representative groups.
In this paper we argue that an effective Web service retrieval
algorithm should explicitly take into account all PDMs. We
refer to this requirement as R1.

PDMs provide a finer granularity for the discovery and
selection process. Still, an open issue is the lack of a single
method that objectively determines the optimal degree of
match between parameters. In fact, there are two general
directions for assessing the match among parameters. The first
treats parameter descriptions as documents and employs basic
Information Retrieval techniques to extract keywords [1]. Sub-
sequently, a string similarity measure is used to compute the
PDM. The second follows the Semantic Web vision. Service
descriptions are enriched by annotating their parameters with
semantic concepts taken from domain ontologies [2]. Then,
estimating the PDM reduces to a problem of logic inference,
i.e., using a reasoner to check for equivalence or subsump-
tion relationships between the corresponding concepts. More
recently, hybrid techniques have also been proposed [3].

Both directions share their strengths and weaknesses.
Keyword-based matchmaking fails to properly identify and
extract semantics, since service descriptions are typically short
documents with few terms. On the other hand, semantic-based
matchmaking is hindered by the lack of available ontologies,
the difficulty in achieving consensus among a large number
of involved parties, and the considerable overhead in develop-
ing, maintaining an ontology and semantically annotating the
available services. Depending on numerous factors, such as the
application domain or the user’s preferences, the most suitable
method for assessing PDMs can be any of the above. Based
on these observations, we advocate ranking and clustering that
simultaneously leverage multiple criteria for estimating the
PDMs. We refer to this requirement as R2.

In a recent work, we consider the problem of ranking Web
service search results [4]. In this paper, we propose a unified
framework for ranking and clustering Web services, satisfying
requirements R1 and R2. The core concept in the proposed

methodology is multi-criteria service dominance. Intuitively,
an advertised service Si dominates another Sj , with respect
to a given request, if Si has higher PDMs compared to Sj

in all parameters and according to all criteria. The notion of
dominance is inherently objective: if Si dominates Sj , then Si

will have a higher overall SDM, independently of the PDM
criteria and aggregation method used.

Clearly dominating services are rare to find because of the
trade-offs offered by the advertisements. Rather, most services
will only be good matches in some parameters while bad
in others. Further, even for a particular parameter, different
criteria may provide conflicting degrees of match. Table 1
illustrates this with an example. For simplicity, we assume all
services have one input Pin and one output Pout parameter,
and that there exist four advertisements, A, B, C, D. Further-
more, for the given request, three different matching filters
(e.g., different string similarity measures), m1, m2, and m3,
are applied, resulting in the PDMs shown in Table 1. Observe
that under any criterion, service A constitutes the best match
with respect to both parameters. Hence, A dominates B, C,
and D. However, there is no clear winner among the other
three. For instance, according to m1, B is definitely better than
D. On the other hand, m2 suggests that B has a lower match
degree for the input parameter but a higher for the output.

TABLE 1
Example services with multiple criteria PDMs
Service Parameter m1 m2 m3

A
Pin 0.96 1.00 0.92
Pout 0.92 0.96 1.00

B
Pin 0.80 0.60 0.64
Pout 0.80 0.88 0.72

C
Pin 0.84 0.88 0.72
Pout 0.84 0.64 0.60

D
Pin 0.76 0.68 0.56
Pout 0.76 0.64 0.68

To handle the inherent ambiguity in dominance relationships
among advertised services, our methodology adapts the notion
of uncertain dominance from [5]. Briefly, a service dominates
another with a probability that depends on multiple criteria
PDMs. Then, advertisements are ranked or clustered with
respect to their uncertain dominance relationships. The main
contributions of our work are summarized as follows.

1. We propose a method for determining dominance rela-
tionships among service advertisements that simultaneously
takes into consideration multiple PDM criteria.

2. We introduce the problem of ranking Web services based on
dominance relationships and discuss efficient algorithms.

3. We introduce the problem of clustering Web services based
on dominance relationships and discuss efficient algorithms.

4. We extensively evaluate our approaches in terms of retrieval
effectiveness, using real requests and relevance sets, and in
terms of efficiency, using synthetic scenarios.
The rest of the paper is organized as follows. Section 2

reviews related work. Section 3 formally defines dominance
scores for comparing Web service search results. Then, Sec-
tions 4 and 5 describe, respectively, efficient algorithms for
ranking and clustering the search results. Section 6 presents
our experimental study. Finally, Section 7 concludes the paper.



SKOUTAS et al.: RANKING AND CLUSTERING WEB SERVICES USING MULTI-CRITERIA DOMINANCE RELATIONSHIPS 3

2 RELATED WORK

In this section we discuss related work regarding Web service
discovery, skylines, data fusion, and search results clustering.

Web Service Discovery. Current industry standards for
Web service description and discovery (WSDL, UDDI) focus
mainly on keyword-based matching. Integrating multiple exter-
nal matching services to a UDDI registry is proposed in [6]. A
matching service is selected based on specified policies (e.g.,
the first available, or the most successful). If more than one are
invoked, the union or the intersection of the results is returned.

To overcome the limitations of keyword-based search, sev-
eral methods propose semantic-based approaches that use
ontologies to enhance the service descriptions (WSDL-S,
OWL-S, WSMO) and address the matchmaking as a logic
inference task [2]. In [7] and [8], the similarity between
requested and offered inputs and outputs is assessed by
comparing classes in an associated domain ontology. In [9],
the matching of requested and offered parameters is treated
as matching bipartite graphs. Ontologies, user profiles, and
query expansion or relaxation, are used in [10]. Further,
hybrid matchmakers OWLS-MX [3] and WSMO-MX [11]
exist for OWL-S and WSMO services, respectively. In a
different direction, [12] proposes content-based matching and
focuses on data-intensive Web services. Specifically, it probes
the candidate service and measures the relevance based on the
actual data returned, rather than on the metadata in the service
description.

These works focus on matching pairs of parameters from
the requested and offered services, while the overall SDM
is typically calculated as a weighted average, assuming the
existence of an appropriate weighting scheme. Furthermore,
they do not consider more than one matching criteria. Based
on the diversity of these approaches, it is evident that there is
no single matching criterion that constitutes the silver bullet for
the problem. Therefore, the approach proposed in this paper
provides an efficient method that leverages multiple matching
criteria (e.g., keyword, semantic, or content based) and service
parameters, with no loss of information from aggregating, and
without requiring a-priori knowledge of the user’s preferences.

There are several works that employ clustering during the
service discovery process. Clusters are used in [1] to group
names of parameters into semantically meaningful concepts.
Different types of similarity are then combined using a lin-
ear function, with manually assigned weights. Learning the
weights from user feedback is suggested for future work.
In [13], clustering quickly filters out irrelevant services for a
given request. Then, the remaining services are matched at the
concept level, where concepts are extracted from the request
and the advertisements using probabilistic latent semantic
analysis. The main difference of these works to our approach
is that we do not apply clustering to identify relevant services,
but to group search results according to the different trade-offs
with respect to the request parameters. Users can then easily
drill down to those results better capturing their needs.

Skylines. In this work we use concepts of multi-objective
optimization, or skyline queries [14]. Given a set of points, the
skyline is defined as the subset of points that are not dominated

by any other, i.e., for which no objectively better point exists.
The BNL algorithm [14] iterates over the data set, comparing
each point with every other, and reports those not dominated.
SFS [15] improves on BNL, by pre-sorting the input according
to a monotone scoring function F , reducing the number of
dominance checks. SaLSa [16] proposes an efficient termina-
tion condition for SFS. Other works, [17], [18], exploit index
structures to speed-up the skyline computation process.

Even though our work exploits the basic techniques un-
derlying the discussed methods, they cannot be directly ap-
plied to our problem for several reasons. First, the index-
based methods work only for static data. In our setting, the
underlying data depend on the matching scores and thus an
index would have to be rebuilt for each query. Second, none
of the above methods consider ranking or clustering. However,
as we discuss shortly, some recent algorithms investigate these
issues. Third, multiple matching criteria are not considered.
To address this last concern, our work borrows ideas from
the probabilistic skyline model for uncertain data [5], which
however fails to rank or cluster the skyline.

Regarding ranking of the skyline, we note that the impor-
tance of combining top-k queries with skyline queries has been
pointed out in [19]. However, some important differences to
our work exist. First, this approach also relies on the use of an
index, in particular an aggregate R-tree. Second, it considers
only one of the ranking criteria proposed in this paper. Third,
it does not address the requirement for handling multiple
matching criteria. To deal with large skylines, [20] relaxes
the notion of dominance to k-dominance, and defines top-
δ dominant skyline queries, which, return a set of at least
δ points. Finally, [21] relies on users to specify additional
preferences among points so as to control the result size.

Regarding clustering of the skyline, the k most represen-
tative skyline operator is proposed in [22]. This selects a set
of k skyline points, so that the number of points dominated
by them is maximized. On the other hand, [23] tries to select
the k skyline points that best capture the trade-offs among the
parameters. Our work builds upon the latter, as it defines a
more intuitive notion of representativeness. Still none of this
techniques deal with multiple criteria.

Data Fusion. Given a set of ranked lists of documents
returned by different search engines, data fusion is the con-
struction of a single ranked list combining the individual rank-
ings. Data fusion techniques are classified based on whether
they require knowledge of the relevance scores and whether
training data is used [24]. The simplest method based solely
on the documents’ ranks is the Borda-fuse model [24]. It
assigns as score to each document the summation of its rank
(position) in each list. Training data can be used to assess the
performance of each source and, hence, learn its importance.
The Condorcet-fuse method [25] is based on a majoritarian
voting algorithm, which specifies that a document d1 is ranked
higher in the fused list than another document d2 if d1 is
ranked higher than d2 more times than d2 is ranked higher than
d1. An outranking approach was recently presented in [26].
According to this, a document is ranked better than another if
the majority of input rankings is in concordance with this fact
and at the same time only a few input rankings refute it.



4 IEEE TRANSACTIONS ON SERVICES COMPUTING

When the relevance scores are available, other fusion tech-
niques, including CombSUM, CombANZ and CombMNZ, can
be applied [27]. In CombSUM, the fused relevance score of
a document is the summation of the scores assigned by each
source. In CombANZ (CombMNZ), the final score of a docu-
ment is calculated as that of CombSUM divided (multiplied)
by the number of lists in which the document appears. In
[28], the author concludes that CombMNZ provides the best
retrieval efficiency. Seen in this context, our work addresses a
novel problem where in each rank a vector of scores, instead
of a single, measures the relevance for each data item.

When training data is available, it is shown in [29] that a
linear (weighted) combination of scores works well when the
various rank engines return similar sets of relevant documents
and dissimilar sets of non-relevant documents. For example,
a weighted variant of CombSUM is successfully used in [30]
for the fusion of multilingual ranked lists. The optimal size of
the training data that balances effectiveness and efficiency is
investigated in [31].

Probabilistic fusion techniques, which rank documents
based on their probability of relevance to the given query,
have also appeared. The relevance probability is calculated in
the training phase, and depends on which rank engine returned
the document amongst its results and the document’s position
in the result set. In [32], such a technique was shown to
outperform CombMNZ.

Search Results Clustering. Most existing Web search
engines return a ranked list of documents as a result to a user
query. Some works propose a post-processing step that themat-
ically groups similar documents into clusters. This facilitates
quick exploring of the results and locating interesting items.
Typical examples are the algorithms proposed in Grouper [33]
and Lingo [34]. Commercial applications have also appeared
recently, such as Vivisimo (http://www.vivisimo.com) and
Grokker (http://www.grokker.com). Our idea for clustering the
retrieved services to reveal trade-offs among PDMs is inspired
by these works. Note, however, that this line of research is not
applicable in our case, as it typically operates on text snippets
returned by the search engine. To the best of our knowledge,
this is the first work to discuss clustering matched services
considering multiple matching criteria.

3 SERVICE DOMINANCE SCORES

This section introduces the notion of Web service dominance
and discusses related concepts used in the following for service
ranking and clustering. To abstract away from a particular
representation and to simplify the discussion, we model a Web
service operation as a function that receives a number of inputs
and returns a number of outputs. Other parameters, such as
pre-conditions, effects, QoS, can be incorporated seamlessly.

Assume a service request Q with a set of input Pin(Q) and
output Pout(Q) parameters. We write Q.Pj to denote the j-
th input parameter, where Pj ∈ Pin(Q). Further, let S be an
advertised service with input and output parameters Pin(S)
and Pout(S), respectively. Note that S can be a match to Q,
even when their parameter sets’ cardinalities differ, e.g., an
advertisement that produces more outputs than requested.

Consider a matching function mi assessing the PDM, i.e.,
the degree of match among pairs of parameters. mi produces
scores in the range [0, 1], where higher values correspond to
better matches. Given a request Q, the match instance of a
service S under the mi criterion to be a vector si such that

si[j]=


max

Pk∈Pin(S)
{mi(S.Pk, Q.Pj)}, ∀j : Pj ∈Pin(Q)

max
Pk∈Pout(S)

{mi(S.Pk, Q.Pj)},∀j : Pj ∈Pout(Q).
(1)

The vector si has a total of d = |Pin(Q)| + |Pout(Q)|
entries that correspond to the input and output parameters of
the request. Intuitively, each entry quantifies how well the
corresponding parameter of the request is matched by the
advertisement S. Clearly, an input (output) parameter of Q
can only match with an input (output) parameter of S.

Let M be a set of matching functions. Given a request
Q and an advertisement S, each mi ∈ M results in a
distinct match instance. We refer to the set of instances, as
the match object of service S. In the following, we abuse
notation by representing the advertisement and its match object
with the same uppercase letter (e.g., S); further, we use the
terms match object and service interchangeably. We reserve
lowercase letters for match instances of the corresponding
service (e.g., s1, s2, etc.). The notation si ∈ S implies that
instance si corresponds to the match vector, i.e., service, S.

We denote as I the set of all match instances, given a
set of advertised services S and a set of matching functions
M. Since a match instance can be seen as a d-dimensional
point, we use the notion of dominance from [14] to describe
relationships among match instances. Given two instances
u, v ∈ I, we say that u dominates v, denoted by u � v, iff
u has higher or equal PDM in all parameters (or dimensions)
and strictly higher PDM in at least one compared to v’s, i.e.,

u � v ⇔ ∀i u[i] ≥ v[i] ∧ ∃j u[j] > v[j]. (2)

If u is neither dominated by nor dominates v, then u and
v are incomparable. Notice that the notion of dominance
leverages the PDMs of all parameters, without performing any
aggregation; hence, it satisfies the requirement R1.

Figure 1 draws the three match instances for each service
of Table 1, as a two-dimensional point in the Pin × Pout

space. For example, a1 corresponds to the PDMs of service A
under criterion m1 and, hence, has coordinates (0.96, 0.92).
According to the definition of dominance, instances that are in
the top right corner constitute better matches. As an example,
notice that d1 dominates b3 and c3; similarly, it is dominated
by b1 and c1, as well as by all the instances of A; finally, it
neither dominates nor is dominated by b2 and c2.

Under a single matching function, i.e., a single instance, the
dominance relationship among services is unambiguous. How-
ever, when multiple matching functions are applied, resulting
in different PDMs, each service is represented by a set of
M = |M| instances. Consequently, dominance relationships
between services become uncertain. This work quantifies un-
certainty using probabilities according to the model proposed
in [5]. In the following, without loss of generality, all instances
of an object are considered of equal probability, i.e., all
the different matching criteria employed are considered of



SKOUTAS et al.: RANKING AND CLUSTERING WEB SERVICES USING MULTI-CRITERIA DOMINANCE RELATIONSHIPS 5

0.50

0.60

0.70

0.80

0.90

1.00

0.50 0.60 0.70 0.80 0.90 1.00

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2d3

X

X

X

X
bmax

bmin

amin

amax

Pin

Pout

Fig. 1. Services of Table 1 in the Pin × Pout space

equal importance; however, it is straightforward to extend the
approach to the case that different weights are assigned to
each matching criterion. Then, a service U dominates another
service V with a probability:

Pr[U � V ] =
1

M2

∑
u∈U

∑
v∈V
|u � v| (3)

where |u � v| is 1 if u � v and 0 otherwise. Intuitively,
the probability that U dominates V measures the number of
instances of V dominated by each instance of U .

Based on the notion of uncertain service dominance, we next
present three distinct definitions for assessing when a service
is objectively interesting, which are then used for ranking and
clustering. These definitions take into consideration multiple
criteria, hence satisfy the requirement R2.
Service Skyline Score. Interesting services are those not
dominated by any other with high probability. Given a match
instance u, we define the skyline score of u as u.sky =∏

V 6=U (1 − 1
M

∑
v∈V |v�u|). Then, the following equation

measures the probability of a service U not being dominated,
termed service skyline score, or skyline probability in [5].

U.sky =
1

M

∑
u∈U

u.sky (4)

Service Dominated Score. Given a match instance u,
we define the dominated score of u as u.dds =
1
M

∑
V 6=U

∑
v∈V |v�u|. Hence, u.dds considers the instances

that dominate u. The dominated score of a service U is defined
as the (possibly weighted) average of the dominated scores of
its instances:

U.dds =
1

M

∑
u∈U

u.dds =
∑
V 6=U

Pr[V � U ]. (5)

The dominated score of a service indicates the average number
of services that dominate it. Hence, a lower dominated score
indicates a better match result.
Service Dominating Score. Given a match instance u,
we define the dominating score of u as u.dgs =
1
M

∑
V 6=U

∑
v∈V |u�v|. Thus, u.dgs considers the instances

that u dominates. The dominating score of a match object U is
defined as the (possibly weighted) average of the dominating
scores of its instances:

U.dgs =
1

M

∑
u∈U

u.dgs =
∑
V 6=U

Pr[U � V ]. (6)

The dominating score of a service indicates the average num-
ber of services that it dominates. Hence, a higher dominating
score indicates a better match result.

As an example, consider the match object C with instances
c1, c2 and c3 depicted in Figure 1. Instance c1 is dominated
by a1, a2 and a3, whereas it dominates b1, b3, d1, d2 and d3;
hence, its scores are c1.dds = 1 and c1.dgs = 5/3. Similarly,
we compute c2.dds = 1, c2.dgs = 1/3, and c3.dds = 5/3,
c3.dgs = 0. Therefore, C.dds = 11/9 and C.dgs = 6/9.
Further, we observe that all the instances of A dominate all
the instances of C. Thus, Pr[A � C] = 1, and C.sky = 0.

4 RANKING WEB SERVICES

Section 4.1 introduces the problem of ranking Web services,
and Sections 4.2, 4.3 and 4.4 describe our proposed solutions,
based on dominance relationships.

4.1 Problem Statement
The problem of ranking Web services entails computing the
scores of services and returning the top-k highest ranking ones.
All the scores defined in Section 3 satisfy the requirements
R1 and R2, and therefore qualify as possible ranking scores.
However, the skyline score, due to the product involved in
Equation 4, can be too restrictive: if a service Si is completely
dominated (i.e., with probability 1) by just a single other
service Sj , then this is sufficient to completely disqualify Si

from the result set, as its skyline score would be 0 (recall the
last example in Section 3). Given that the similarity measures
provide only an indication of the actual relevance of the
considered service to the given request, interesting services
may be missed using the skyline score.

Based on the above discussion, we choose to rank services
based on the dominated and dominating scores. A straight-
forward algorithm is the following. For each instance u of a
service object U , iterate over the instances of all other objects
and increase a counter associated with U , if u dominates (resp.,
is dominated by) the instance examined. Then, to produce the
top-k results, simply sort them according to the score in the
counter. However, the applicability of this approach is limited
by its large computation cost, as it needs to compute the score
for all services, even those which are not in the top-k. Observe
that independently of k, the algorithm exhaustively performs
all possible dominance checks among instances.

In the following, we propose algorithms that address
this issue by establishing lower and upper bounds for the
dominated/dominating scores. This essentially allows us to
(dis-)qualify objects to (from) the results set, without com-
puting their exact score. Let U be the current k-th object. For
another object V to qualify for the result set, the score of V ,
as determined by its bounds, should be at least as good (i.e.,
lower, for dds, or higher, for dgs) as that of U . Next, we delve
into some useful properties of the dominance relationship that
help us prune the search space.

Property 1. If u � v, then v is dominated by at least as many
instances as u, i.e., v.dds ≥ u.dds, and it dominates at most
as many instances as u, i.e., v.dgs ≤ u.dgs.

Property 2. Let F (u) be a function that is monotone in all
dimensions. If u � v, then F (u) > F (v).



6 IEEE TRANSACTIONS ON SERVICES COMPUTING

Property 3. Let F (u) be a function that is monotone and
symmetric in all dimensions. If mini u[i] ≥ F (v) for two
instances u and v, then u dominates v as well as all instances
with F () value smaller than v’s.

Given an object U , let umin be a virtual instance of
U whose value in each dimension is the minimum of the
values of the actual instances of U in that dimension, i.e.,
umin[i] = min

|U |
j=0 uj [i], ∀i ∈ [0, d). Similarly, let umax[i] =

max
|U |
j=0 uj [i], ∀i ∈ [0, d). Viewed in a 2-d space, these virtual

instances, umin and umax, form, respectively, the lower-left
and the upper-right corners of a virtual minimum bounding
box containing the actual instances of U (see Figure 1). The
following property holds.

Property 4. For each instance u ∈ U , it holds that umax � u,
and u � umin.

Combined with the transitivity of the dominance relationship,
this allows us to avoid an exhaustive pairwise comparison
of all instances of two objects, by first comparing their
corresponding minimum and maximum virtual instances. More
specifically, given two objects U and V , (a) if umin dominates
vmax, then all instances of U dominate all instances of V , i.e.,
umin � vmax ⇒ u � v ∀u ∈ U, v ∈ V ; (b) if umin dominates
an instance of V , then all instances of U dominate this instance
of V , i.e., umin � v ⇒ u � v ∀u ∈ U ; (c) if an instance
of U dominates vmax, then this instance of U dominates all
instances of V , i.e., u � vmax ⇒ u � v ∀v ∈ V .

4.2 Ranking by Dominated Score

The first algorithm, hereafter referred to as TKDD, computes
top-k Web services according to the dominated score criterion,
dds. The goal is to quickly find, for each object, other objects
dominating it, avoiding an exhaustive comparison of each
instance to all other instances.

The algorithm maintains three lists, Imin, Imax, and I,
containing, respectively, the minimum bounding instances, the
maximum bounding instances, and the actual instances of the
objects. The instances inside these lists are sorted by F (u) =∑

i u[i] and are examined in descending order. The results are
maintained in a list R sorted in ascending order of dds. The
algorithm uses two variables, ddsMax and minV alue, which
correspond to an upper bound for dds, and to the minimum
value of the current k-th object, respectively.

Since for an object U we are interested in objects that
dominate it, we search only for instances that are prior to those
of U in I. Since, the top matches are expected to appear in
the beginning of I, this significantly reduces the search space.
The basic idea is to use the bounding boxes of the objects to
avoid as many dominance checks between individual instances
as possible. After k results have been acquired, we use the
score of the k-th object as a maximum threshold. Objects
whose score exceeds the threshold are pruned. In addition, if at
some point, it is guaranteed that the score of all the remaining
objects exceeds the threshold, the search terminates.

More specifically, the algorithm, shown in Figure 2, pro-
ceeds in the following six steps.

Algorithm TKDD
Input: A set of objects U , each comprising M instances;

The number k of results to return.
Output: The top-k objects w.r.t. dds in a sorted set R.
begin1

Initialize R = �; ddsMax = ∞; minV alue = -1 ;2
for U ∈ U do3
(umin, umax) ← calculate min and max bounding instances ;4
Imin ← insert umin ordered by F (umin) desc. ;5
Imax ← insert umax ordered by F (umax) desc. ;6
for u∈U do I ← insert u ordered by F (u) desc. ;7

for umax∈Imax do8
if |R| = k then9

if F (umax) ≤ minV alue then return R;10
U.dds = 0 ;11
for vmin ∈ IF (umax)

min do12
if vmin � umax then13
U.dds = U.dds + 1 ;14
if (U.dds + V.dds) ≥ ddsMax then15

for u∈U do u.dds = U.dds ;16
skip U ;17

U.dds = 0 ;18
for v ∈ IF (umax) do19

if v � umax then20
U.dds = v.dds + 1/M ;21
if (U.dds + v.dds) ≥ ddsMax then22

for u∈U do u.dds = U.dds ;23
skip U ;24

U.dds = 0 ;25
for u∈U do26

for vmin ∈ IFmin(u) do27
if vmin � u then28
u.dds = u.dds + 1/M ;29
if (U.dds + u.dds + V.dds) ≥ ddsMax then30
U.dds = U.dds + u.dds + V.dds ;31
skip U ;32

U.dds = U.dds + u.dds + V.dds ;33

U.dds = 0 ;34
for u∈U do u.dds = 0 ;35
for u∈U do36

for v ∈ IF (u) do37
if v � u then38
u.dds = u.dds + 1/M2 ;39
if (U.dds + u.dds + v.dds) ≥ ddsMax then40
U.dds = U.dds + u.dds + v.dds ;41
skip U ;42

U.dds = U.dds + u.dds + v.dds ;43

if |R| = k then remove the last result from R ;44
R ← insert U ordered by dds asc.45
if |R| = k then46
Uk ← the k-th object in R ;47
ddsMax = Uk.dds;48

minV alue =
M
min
i=1

(Ukmin
[i]);49

return R;50
end51

Fig. 2. Algorithm TKDD

Step 1. Initializations (lines 2–7). The result set R and the
variables ddsMax and minV alue are initialized. The lists
Imin, Imax, and I are initialized, and sorted by F (u). Then
the algorithm iterates over the objects, according to their
maximum bounding instance.

Step 2. Termination condition (line 10). If the F () value
of the current umax does not exceed the minimum value of



SKOUTAS et al.: RANKING AND CLUSTERING WEB SERVICES USING MULTI-CRITERIA DOMINANCE RELATIONSHIPS 7

the current k-th object, the result set R is returned and the
algorithm terminates (see Property 3).

Step 3. Dominance check object-to-object (lines 12–17). For
the current object U , the algorithm first searches for objects
that fully dominate it. For example, in the case of the data
set of Figure 1, with a single dominance check between bmax

and amin, we can conclude that all instances b1, b2 and b3
are dominated by a1, a2 and a3. According to property 2,
only objects with F (vmin) > F (umax) need to be checked.
If a vmin is found to dominate umax, then the score of U is
increased by 1, and the sum of the new score and the score
of V (see Property 1) is compared to the current threshold,
ddsMax. If it exceeds the threshold, the object is pruned and
the iteration continues with the next object. In this case, the
score of the object is propagated to its instances for later use.
Otherwise, the score of the object is reset, to avoid duplicates,
and the search continues in the next step.

Step 4. Dominance check object-to-instance (lines 19–24).
This step searches for individual instances v that dominate U .
For example, in Figure 1, a dominance check between dmax

(which coincides with d1) and c1 shows that all instances d1,
d2, and d3 are dominated by c1. As before, only instances
with F (v) > F (umax) are considered. If an instance v is
found to dominate umax, then the score of U is increased by
1/M , where M is the number of instances per object, and the
sum of the new score and that of v is compared to the current
threshold, ddsMax.

Step 5. Dominance check instance-to-object (lines 26–33). If
the object U has not been pruned in the previous two steps,
its individual instances are considered. Each instance u is
compared to instances vmin, with F (vmin) > F (u). If it is
dominated, the score of u is again increased by 1/M , and the
threshold is checked. In Figure 1, this is the case with d3 and
bmin.

Step 6. Dominance check instance-to-instance (lines 35–42).
If all previous steps failed to prune the object, a comparison
between individual instances takes place where each successful
dominance check contributes to the object’s score by 1/M2.

Step 7. Result set update (lines 44–49). If U has not been
pruned in any of the previous steps, it is inserted in the result
set R. If k results exist, the last is removed. After inserting
the new object, if the size of R is k, the thresholds ddsMax
and minV alue are set accordingly.

4.3 Ranking by Dominating Score
The TKDG algorithm computes the top-k dominant Web
services with respect to the dominating score, i.e., it retrieves
the k match objects that dominate the larger number of other
objects. This task is more time consuming compared to that
of TKDD, for the following reason. Let pos(u) denote the
position of the currently considered instance u in the sorted,
decreasing by F , list I of instances. To calculate u.dds, TKDD
performs in the worst case pos(u) dominance checks, i.e., with
those before u in the list. On the other hand to calculate u.dgs,
TKDG must perform in the worst case |I|−pos(u) checks, i.e.,

Algorithm TKDG
Input: A list I containing all instances u, in descending order of F (u);

The number k of results to return.
Output: The top-k objects w.r.t. dgs in a sorted set R.
begin1

Initialize R = ∅, L = ∅;2
U ← the set of objects in descending order of F (umax) ;3
for every object U ∈ U do4

if ( |I|−pos(umax)
M < Rk−1.dgs

− ) then return R;5
if ( |R| = 0 ) then add U in R;6
if (∃V ∈ L ∪Rk−1 s.t. V fully dominates U then skip U ;7
set U.dgs− = 0, U.dgs+ =

∑
u∈U

|I|−pos(u)

M2 , Ui = pos(umax);8
for j = |R| − 1 to 0 do9

while ( not ( U.dgs+ < Rj .dgs
− or U.dgs− > Rj .dgs

+ ) ) do10
refineBounds(U , Rj );11

if ( U.dgs+ < Rj .dgs
− ) then12

if ( j = k − 1 ) then add U in L, and continue with the next object;13
else move Rk−1 to L, add U in R after Rj , and continue with the14
next object;

move Rk−1 to L, and add U at the beginning of R;15

return R;16
end17

Fig. 3. Algorithm TKDG

those after u. Since the most dominating and less dominated
objects are located close to the beginning of I, execution will
terminate when pos(u) is small relative to |I|. As a result, the
search space for TKDG is significantly larger than TKDD’s.
Furthermore, TKDD allows for more efficient pruning, since it
searches among objects and/or instances that have already been
examined in a previous iteration, and therefore (the bounds of)
their scores are known.

The TKDG algorithm maintains three structures: (1) the I
list; (2) a list R of at most k objects (current results), ordered
by dominating score descending; (3) a list L containing objects
that have been disqualified from R, used to prune other
objects. The lists R and L are initially empty.

Similar to TKDD, the algorithm iterates over the objects, in
descending order of their maximum bounding instance (lines
3–4). Let U be the currently examined object. U can dominate
at most |I|− pos(umax) instances. If this amount, divided by
the number of instances per object, is lower than T , where
T is the lower bound for the score of the k-th object in R,
the whole process terminates, and the result set R is returned
(line 5). On the other hand, if the result set is empty, then U
is added as the first result (line 6).

Next, if U is dominated by the k-th object in R or by
any object in L, it is pruned (line 7). Otherwise, we need
to check whether U qualifies for R. For an examined object
U it is straightforward to calculate its dominating score, by
examining all instances in I, starting from the position of its
best instance. However, we avoid unnecessary computations
by following a lazy approach, which examines instances in I
until a position that is sufficient to qualify (disqualify) U for
(from) the current result set R. For this purpose, we maintain
for each examined object U a lower and an upper bound for its
dominating score, U.dgs− and U.dgs+ respectively, as well as
the last examined position in I, denoted by Ui. We initialize
the lower and upper bounds for U.dgs to



8 IEEE TRANSACTIONS ON SERVICES COMPUTING

U.dgs− = 0 and U.dgs+ =
∑
u∈U

|I| − pos(u)

M2
,

respectively. Also, the last examined position for U is initial-
ized to Ui = pos(umax) (line 8).

Let V be the k-th result in R. We start by comparing U
with V . Three cases may occur: (1) if U.dgs+ < V.dgs−,
then U does not qualify for R, and it is inserted in L; (2)
if U.dgs− > V.dgs+, U is inserted in R before V , and it is
recursively compared to the preceding elements of V in R; if
V was the k-th object in R, it is removed from R and it is
inserted in L; (3) otherwise, the lower and upper bounds of
U and V need to be refined, until one of the conditions (1) or
(2) is satisfied. This refinement is performed by searching in
I for instances dominated by an instance of U , starting from
the position Ui. At each step of this search, the instance at this
position, v, is compared to the instances of U preceding it. For
each instance u of U that dominates (does not dominate) v, the
lower (upper) bound of the dominating score of U is increased
(decreased) by 1/M2. Also, the last examined position for U
is incremented by 1. Notice that, as in TKDD, if F (v) does not
exceed the minimum value of u, then u dominates v and all
its susequent instances, hence, the lower bound of the score
of u is updated accordingly, without performing dominance
checks with those instances (lines 9–15).

4.4 Ranking by Dominance Score
This section introduces a ranking score that achieves a balance
between dominated and dominating scores.
Service Dominance Score. Given an instance u, we define
the dominance score of u as u.ds = u.dgs− λ · u.dds, which
promotes u for each instance it dominates, while penalizing
it for each instance that dominates it. The parameter λ is a
scaling factor explained in the following. Consider an instance
u corresponding to a good match. Then, it is expected that u
will dominate a large number of other instances, while there
will be only few instances dominating u. In other words, the
dgs and dds scores of u will differ, typically, by orders of
magnitude. Hence, the factor λ scales dds so that it becomes
sufficient to affect the ranking obtained by dgs. Consequently,
the value of λ depends on the size of the data set and the
distribution of the data. A heuristic for selecting the λ value
that works well in practice (see Section 6.1) is ∆dgs/∆dds,
where ∆dgs and ∆dds are the differences in the scores of the
first and second result obtained by each respective criterion.
The dominance score of an object U is defined as the (possibly
weighted) average of the dominance scores of its instances:

U.ds =
1

M

∑
u∈U

u.ds (7)

Next, we outline the TKM algorithm, that computes the top-
k matches with respect to the dominance score. In particular,
this algorithm is derived by the algorithm TKDG, with an
appropriate modification to account also for the dominated
score. More specifically, this modification concerns the com-
putation of the lower and upper bounds of the scores. First,
the lower bound for the score of an object is now initialized to
U.dgs− = −λ ·

∑
u∈U

pos(u)
M2 instead of 0. Second, the bounds

refinement process now needs to consider two searches, one
for instances dominated by the current object, and one for
instances that dominate the current object. These searches pro-
ceed interchangeably, and the bounds are updated accordingly.
Consequently, two separate cursors need to be maintained for
each object, to keep track of the progress of each search in
the list containing the instances.

5 CLUSTERING WEB SERVICES

Section 5.1 introduces the problem of clustering Web service
search results, based on dominance relationships. Sections 5.2
and 5.3 present two algorithms to address this problem.

5.1 Problem Statement
The purpose of clustering is fundamentally different from that
of ranking. Instead of selecting the k best matches, we orga-
nize the matched services into ` groups that capture different
trade-offs among all the considered request parameters. To
better motivate and illustrate this, we refer to a simple example
with two matching filters, one input Pin and one output Pout

parameter, and a set of matched services, A through I . Each
service comprises two match instances, represented as points
in the Pin×Pout plane shown in Figure 4; for example, service
A consists of instances a1 and a2.

Pin

Pout1.00

1.000.50 0.60 0.70 0.80 0.90

0.90

0.80

0.70

0.60

0.50

a2

a1 b1

b2 d1

d2

c1

c2

e1

e2

g1g2

f1

f2

h1

h2
i1

i2

Fig. 4. Example services in the Pin × Pout space

Upon inspection of Figure 4, one can deduce that the
matched services can be organized in 4 clusters: {A,B},
{C,D,E}, {F,G}, {H, I}. The first cluster, {A,B}, contains
services that match the output parameter almost perfectly (with
PDMs above 0.90), but fail to match the input parameter.
Conversely, the third cluster, {F,G}, corresponds to services
that match the input but not the output parameter. The services
in the second cluster, {C,D,E}, match both parameters quite
well (with PDMs between 0.75 and 0.90), but not as well as
services in the first and third cluster match the output and input
parameters, respectively. Finally, the fourth cluster, {H, I},
consists of services that match both parameters with average
degrees of match (PDMs between 0.60 and 0.75).

Clearly, the last cluster does not contain any useful matches,
as both H and I are dominated by C, D and E with probabil-
ity 1 (all matching criteria agree). However, all others contain
useful candidates that capture different trade-offs w.r.t. the
request parameters. For example, a user interested in finding
the best service might look in the second cluster; indeed, it
contains the top-1 result, D, according to any algorithm of



SKOUTAS et al.: RANKING AND CLUSTERING WEB SERVICES USING MULTI-CRITERIA DOMINANCE RELATIONSHIPS 9

our ranking framework (Section 4). Consider now a user that
requires almost exact matches for either or both parameters,
and hence is not satisfied with the services in the second
cluster. That user would have to consider service composition
opportunities in the first and third clusters. For example, a
service, say A, in the first cluster matches the output parameter
perfectly and can thus be combined with another, say X , to
obtain the desired service. Therefore, to identify such an X ,
the user issues a new query where the requested service has
as input that of the original request and as output A’s input.
Alternatively, the user may invoke a similar process for a
service, say F , that belongs to the third cluster. S/he issues a
new query where the requested service has as input F ’s output
and as output that of the original request.

The benefits of clustering the matched services become even
more apparent, when QoS parameters are considered in the
matchmaking process. A typical example would be a query
containing requirements for price and execution time. Then,
one cluster would contain services that are expensive but have
a fast response time, while another cluster contain services
with low or no fee but high execution time. Then, different
types of user, e.g., premium versus custom users, would focus
on different clusters of results to find a good match.

Overall, the benefit of the clustering is that it diversifies the
search results, allowing the users to focus and drill-down on
that subset of the results that better meets their requirements.

The proposed Web service clustering framework effectively
summarizes the various trade-offs (e.g., as in clusters {A,B},
{C,D,E}, {F,G}) associated with the multiple matching
parameters, while eliminating irrelevant services (e.g., cluster
{H, I}). The framework is based on dominance relationships,
and, thus, satisfies the requirements R1 and R2. More specif-
ically, it comprises the following high-level steps:

1. Select the services that have a skyline probability above a
specified threshold p.

2. Select ` representative services from the above set.

3. Form the clusters by assigning each of the remaining
services to its closest representative.

In the following, we focus on steps 1 and 2. Step 3 is
straightforward, as it uses the distance function between two
services defined already in step 2.

Regarding the first step, we choose to set the probability
threshold to 0, so that the derived set will contain those
matches that have a non-zero probability to belong to the
skyline. Thus, intuitively, these are the “most interesting”
objects with respect to the existing trade-offs, from which we
can then select the ` representatives to be used as the “seeds”
for forming the clusters. This choice has also an additional
benefit in terms of efficiency, as shown by the next property.

Property 5. A match object U has a skyline probability
greater than 0 if and only if there exists at least one instance
u for which there does not exist another object V such that
vmin dominates u, i.e., U.sky > 0 iff ∃u s.t. @V s.t. vmin � u.

The proof can be easily derived from Equation 4, combined
with Property 4. The above property also specifies the process
for computing the 0-skyline, which is performed by the

Function SRC
Input: A set of objects U , each comprising M instances.
Output: The set of objects S having non-zero skyline score.
begin1

Initialize S = ∅;2
for U ∈ U do3

for u ∈ U do4
add = true;5
for V ∈ U r {U} do6

if v.min � u then7
add = false;8
break;9

if add == true then10
Insert U in S;11
break;12

return S;13
end14

Fig. 5. Function SRC

function Skyline Representative Candidates (SRC) shown in
Figure 5. This function iterates over all the match objects, and
selects those satisfying the above property.

Returning to the example of Figure 4, the first step elimi-
nates services H and I , as they have 0 skyline probability. To
see this, we need to examine the two instances of service H .
For both h1 and h2 there exists an object, C (either C, D or
E would do) such that cmin dominates them. Because of this
dominance relationship, H (and I) cannot be a better match
than C, and is thus excluded from the next steps.

In the second step, we need to select the most representative
objects among those returned by the SRC function. Two recent
works, [22] and [23], address this issue, however applying
only to conventional dominance relationships. The first tries
to find cluster centers that have high dominating scores. For
the example of Figure 4 and for ` = 3, [22]1 would choose
C, D and E as the three most representative services, missing
important information. On the other hand, the second approach
uses a distance-based metric to obtain a uniform sample of
the skyline that explicitly captures all trade-offs, and therefore
is suitable for the purpose of our clustering. Continuing the
example of Figure 4 and for ` = 3, [23]1 would choose A (or
B), C (or D, E) and F (or F ) as the three most representative
services. Next, we extend this method to account for the
existence of multiple instances per object.

The work in [23] introduced a distance-based definition
for selecting the ` most representative skyline objects: it is
a subset of the skyline S such that for every other skyline
object there is a representative close to it. Given S, we define
the representation error of any subset C of S as

Er(C) = max
U∈SrC

{min
V ∈C

dist(U, V )}. (8)

In our case, we define the distance dist(U, V ) between U
and V as the median among all distances between pairs of
instances of U and V . We choose the median, instead of
the average, to reduce the bias of instances that are very far
apart. Hence, the goal is to find the set of representatives C
that minimizes the representation error. This problem is NP-
hard, even for a single criterion [23]. In the following, we
propose two algorithms that offer different trade-offs between
processing cost and accuracy. Approximate Skyline Clustering

1. We apply [22] and [23] assuming only one instance per service.



10 IEEE TRANSACTIONS ON SERVICES COMPUTING

Algorithm ASC
Input: A set of objects U , each comprising M instances;

The desired number of clusters `.
Output: The ` representative objects for clustering.
begin1
S = SRC (U );2
Select a random U from S;3
Initialize C = {U}; Remove U from S;4
for i = 0 to `− 1 do5
maxdist = 0;6
for U ∈ S do7
mindist =∞;8
for V ∈ C do9
i = 0;10
for u ∈ U do11

for v ∈ V do12
d[i] = dist(u, v);13
i++;14

sort(d); median = d[size(d)/2]);15
if median < mindist then16
mindist = median;17

if mindist > maxdist then18
maxdist = mindist;19
Umax = U ;20

Insert Umax into C; Remove Umax from S;21

return C;22
end23

Fig. 6. Algorithm ASC

(ASC), described in Section 5.2, is an extension of the
2-approximate algorithm of [23] and offers tight accuracy
guarantees with a relatively large processing cost. On the
other hand, Heuristic Skyline Clustering (HSC), described
in Section 5.3, is a novel linear time heuristic, which is
experimentally shown to produce good representatives.

5.2 Approximate Skyline Clustering

As mentioned above, the problem of selecting the ` represen-
tatives that minimize the representation error is NP-hard. The
authors in [23] propose a greedy algorithm that provides a
2-approximate solution. Briefly, the algorithm selects initially
a random object; then, it proceeds iteratively in ` − 1 steps,
selecting at each iteration the farthest neighbor, i.e., the object
with the largest distance from its closest representative.

Figure 6 shows the adaptation of this algorithm for the case
of multiple instances. First, function SRC is invoked to return
an initial candidate set S with non-zero skyline scores (line
2), as discussed in the previous section. A random object is
selected and inserted into the representative set C (lines 3–4).
In each of the following `−1 iterations (lines 5–21) the object
U ∈ S (lines 7–20) with the largest distance from its closest
representative V ∈ C (lines 9–17) is selected and inserted
in the representative set (line 21). The distance between U
and V is calculated as the median of the distances between
pairs of instances of U and V (lines 10–15). Notice that
the ASC algorithm produces a representative set which has
a representation error at most twice as much as the optimal.
The proof is analogous to that of [23], with the difference
that the distance measure simultaneously takes into account
the multiple instances.

Algorithm HSC
Input: A set of objects U , each comprising M instances;

The desired number of clusters `;
The partitioning method part to use.

Output: The ` representative objects for clustering.
begin1
S = SRC (U );2
Initialize C = ∅;3
for U ∈ S do4

Compute the centroid uctr of all instances u ∈ U ;5
Insert uctr in L;6

Sort L using a space-filling curve;7
if part == 0 then8

// equi-width partitioning;9
Let addr(L[1]), addr(L[N ]) be the addresses of the first and last10
objects;
step = (addr(L[N ])− addr(L[1])) /`;11
repr = addr(L[1]) + step/2;12
for uctr ∈ L do13

if addr(uctr) > repr then14
Insert U into C;15
repr = repr + step;16

else17
// equi-depth partitioning;18
step = N/`;19
repr = step/2;20
for i = 0 to ` do21

Insert L[breprc] into C;22
repr = repr + step;23

return C;24
end25

Fig. 7. Algorithm HSC

5.3 Heuristic Skyline Clustering

Although ASC produces a representative set with provable
guarantees, it is still a computationally expensive process, as
shown by the experiments in Section 6. In the following, we
introduce the Heuristic Skyline Clustering (HSC) algorithm,
shown in Figure 7, which is a fast heuristic with no quality
guarantees, though. The basic idea of HSC is to avoid ex-
pensive farthest neighbor searches, by first sorting the match
objects and then retrieving objects at predefined positions in
the sorted list, which are expected to be good representatives.

Initially, HSC invokes function SRC to obtain a candi-
date set of objects S with non-zero skyline scores; also,
the representative set C is initialized to empty (lines 2–3).
The key aspect of HSC lies in arranging the objects in an
appropriate order for partitioning. To preserve the proximity
among objects, we apply a space filling curve, such as the
z-order or the Hilbert curve. The basic property of space
filling curves is that they arrange multi-dimensional points in
a single-dimensional space, i.e., a line, so that points that are
close to each other in the original space are very likely to
remain close in the line. Recall that in our case each object
U ∈ S is a set of M points in the d-dimensional space.
Thus, we need to represent each object by a single point.
We choose the centroid, defined as the barycenter of all the
object’s instances. The centroids and the Hilbert curve are
shown in Figure 8. Each centroid uctr is inserted into a list L,
and is associated with an address addr(uctr), which denotes
its position in the space filling curve; then, all the centroids are
sorted using this address as the key (line 4–7). In our example,
this order coincides with the alphabetical.

Using the sorted list, there are two ways to extract heuris-



SKOUTAS et al.: RANKING AND CLUSTERING WEB SERVICES USING MULTI-CRITERIA DOMINANCE RELATIONSHIPS 11

Pin

Pout1.00

1.000.50 0.60 0.70 0.80 0.90

0.90

0.80

0.70

0.60

0.50

actr bctr

dctr
cctr

ectr

gctrfctr

Hilbert curve

equi-width partition

actr

bctr

cctr

dctr

ectr

fctr

gctr

cctr fctrØ

actr bctr cctr dctr ectr fctr gctr

Hilbert
curve

actr dctr fctr

equi-depth partition

Fig. 8. Partitions based on the Hilbert curve

tically good representatives, equi-width and equi-depth parti-
tioning. The intuition of equi-width partition is to divide the
single-dimensional space into a set of ` partitions of equal
width and select the centroid in the middle of each partition
as a representative. Specifically, the first and last addresses,
i.e., addr(L[1]) and addr(L[N]), are used to define the width,
termed step, of each partition (lines 10–11). The address of the
first desired representative is determined as that of middle of
the first partition (line 12). Then, each centroid is examined
in turn. If the address of the current centroid uctr is after
the desired representative, the object U is inserted in the
result set C, and the address of the next representative is
computed (lines 13–16). Upon conclusion of this process, a
set of representatives is placed in the result set C. However,
there is no guarantee that C will contain ` objects, as there
may not exist a representative in each partition, e.g., in the
case of skewed or sparse data sets. Figure 8 shows the case
of ` = 3 for the services of Figure 4, where the first partition
is empty; thus the representatives are only C,F .

Alternatively, an equi-depth partitioning can be applied.
This is guaranteed to return exactly ` representatives, essen-
tially by generating more representatives (i.e., more clusters) in
more dense areas. The process is similar to a recently proposed
heuristic for maintaining `-medoid clusters in dynamic settings
[35]. The selected representatives lie in positions within the
list L that are bN/`c entries apart (line 19), with the first one
being in the bN/(2`)c-th position (line 20). Figure 8 shows
that for ` = 3 the representatives are A,D,F .

6 EXPERIMENTAL EVALUATION

This section presents an extensive experimental study of our
approach. First, we investigate the benefits of our methods
with respect to the recall and precision of the computed
results and the error in identifying the most representative
services. For this purpose, we rely on a publicly available
benchmark for Web service discovery, comprising real-world
service descriptions, sample requests, and relevance sets. Then,
we consider the computational cost of the proposed algorithms
under different combinations of values for the parameters
involved, using synthetic data sets. All the algorithms were
implemented in Java, and the experiments were conducted on
a Pentium D 2.4GHz with 2GB of RAM, running Linux.

6.1 Retrieval Effectiveness

Experimental setup. We use the publicly available service re-
trieval test collection OWLS-TC v2 (http://www-ags.dfki.uni-sb.
de/∼klusch/owls-mx/), which contains real-world Web service
descriptions, retrieved mainly from public IBM UDDI reg-
istries. More specifically, it comprises: (a) 576 service descrip-
tions, (b) 28 sample requests, and (c) a manually identified
relevance set for each request.

To determine the PDMs of the services, we use the OWLS-
MX matchmaker [3], which matches I/O parameters from
the service descriptions, exploiting either purely logic-based
reasoning (M0) or combined with some content-based, IR
similarity measure. In particular, the following measures are
provided: loss-of-information measure (M1), extended Jaccard
similarity coefficient (M2), cosine similarity (M3), and Jensen-
Shannon information divergence based similarity (M4).

We have adapted the matching engine of OWLS-MX as
follows. For a pair 〈R,S〉, instead of a single aggregated
relevance score, we retrieve a score vector containing the
degrees of match for each parameter. Furthermore, for any
such pair, all similarity criteria (M0–M4) are applied, resulting
in five score vectors. Hence, for a request having in total
d I/O parameters, each matched service corresponds to a
match object, and the score vectors correspond to the object’s
d-dimensional match instances.
Ranking. The conducted evaluation of the algorithms de-
scribed in Section 4 comprises four stages. First, we compare
the three different ranking criteria introduced in our approach,
in terms of the Interpolated Recall-Precision Averages [36],
which measure precision, i.e., percentage of retrieved items
that are relevant, at various recall levels, i.e., after a certain
percentage of all the relevant items have been retrieved. The
resulting precision-recall graphs are depicted in Figure 9(a).
Regarding TKM, we study the effect of the parameter λ (see
Section 3), considering 4 variations, denoted as TKM-λ, for
λ=1, 5, 20, 50. As shown in Figure 9(a), for a recall level up to
30%, the performance of all methods is practically the same.
Differences start to become more noticeable after a recall level
of around 60%, where the precision of TKDG starts to degrade
at a considerably higher rate compared to that of TKDD. This
means that several services, even though dominating a large
number of other matches, were not identified as relevant in
the provided relevance sets. On the other hand, as expected,
the behavior of TKM is dependent on the value of λ. Without
considering any scaling factor, i.e., for λ=1, the effect of the
dds criterion is low, and, hence, although TKM performs better
than TKDG, it still follows its trend. However, significant gains
are achieved by values of λ that strike a good balance between
the two criteria, dds and dgs. The heuristic presented in
Section 3, provides us with a starting value λH , which is equal
to 5 for the data set into consideration. All our experiments
with the real data show that TKM-λH , i.e., TKM having λ=λH ,
produces better results than the other two methods. This is
illustrated by the graph TKM-5 in Figure 9(a). In addition,
the experiments show that for values of λ lower than λH ,
TKM does not produce better results; i.e., the effect of dds
is still not sufficient. On the other hand, we can get further



12 IEEE TRANSACTIONS ON SERVICES COMPUTING

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

c
is

io
n

Recall

TKDD

TKDG

TKM-1

TKM-5

TKM-20

TKM-50

(a) TKDD, TKDG and TKM

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

c
is

io
n

Recall

TKM-5

TKM-20

M0

M1

M2

M3

M4

(b) TKM and individual measures M0-M4

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
re

c
is

io
n

Recall

TKM-5

TKM-20

Borda

MNZ

Outrank

Sum

(c) TKM and fusion approaches

Fig. 9. Ranking: Precision-Recall graphs

improved results (by a factor of around 1% in our experimental
data set), by tuning λ into a range of values belonging to the
same order of magnitude as λH . (Obviously, the tuning of λ
is required only once per data set.) In our experiments, we
got the best performance of TKM for values of λ around 20,
which, as demonstrated by the graph in Figure 9(a), produces
slightly better precision than TKM-5. Further increasing the
factor λ, i.e., the effect of the dds criterion, fails to provide
better results, and, as expected, it eventually converges back
to TKDD, as illustrated by the TKM-50 graph in Figure 9(a).

Next, we examine the resulting benefit of the dominance-
based ranking compared to applying either of the individual
similarity measures M0-M4. The precision-recall measures are
illustrated in Figure 9(b). To avoid overloading the figure, only
the TKM-5 and TKM-20 have been plotted. As shown, the
dominance-based ranking clearly outperforms all the individ-
ual similarity measures. This can be attributed to the fact that
the combination of all the matching criteria constitutes the
matchmaker more tolerant to the false positive or false negative
results returned by the individual measures [37].

In the third stage, to better gauge the effectiveness of our
methodology, we compare with more informed approaches,
as well. When multiple rankings exist, a common practice for
boosting accuracy is to combine, or fuse, the individual results.
Several methods, reviewed in Section 2, exist for this task.
We compare our method to four popular fusion techniques:
the score-based approaches CombSum and CombMNZ [27],
the simple rank-based method of Borda-fuse [24], and the
Outranking approach [26]. The first three techniques are
parameter-free; for the last, we employ a single outranking
relation that corresponds to Pareto-optimality. The obtained
precision-recall graphs are shown in Figure 9(c). Again, our
approach clearly outperforms the other methods. This gain
becomes even more apparent, when noticing through Fig-
ures 9(b) and 9(c) that these fusion techniques, in contrast to
our approach, fail to demonstrate a significant improvement
over the individual similarity measures.

Finally, we evaluate the ranking effectiveness using in
addition the following standard IR evaluation measures [36]:
• Mean Average Precision (MAP): average of precision

values calculated after each relevant item is retrieved.
• R-Precision (R-prec): measures precision after all relevant

items have been retrieved.
• bpref : measures the number of times judged non-relevant

items are retrieved before relevant ones.
• Reciprocal Rank (R-rank): measures (the inverse of) the

rank of the top relevant item.
• Precision at N (P@N): measures the precision after N

items have been retrieved.
Table 2 details the IR metrics for all compared methods.

For each metric, the highest value is shown in bold (we
treat the values of both versions of TKM uniformly), whereas
the second highest in italic. In summary, TKDD and TKDG
produce an average gain of 8.33% and 6.44%, respectively,
with respect to the other approaches. Additionally, TKM-5 and
TKM-20 improve the quality of the results by a percentage
(average values) of 11.44% and 12.56%, respectively.

TABLE 2
IR metrics for all methods

Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20
TKDD 0.7050 0.6266 0.6711 0.8333 0.8071 0.6893 0.6143 0.5446
TKDG 0.6750 0.6233 0.6334 0.8333 0.8143 0.7143 0.6238 0.5089
TKM-5 0.7249 0.6618 0.7098 0.8393 0.8000 0.7036 0.6738 0.5714
TKM-20 0.7375 0.6808 0.7243 0.8393 0.8000 0.7250 0.6857 0.5750

M0 0.5097 0.5128 0.5138 0.7217 0.6357 0.6071 0.5357 0.4464
M1 0.6609 0.5966 0.6313 0.8155 0.7571 0.6679 0.5738 0.5268
M2 0.6537 0.5903 0.6260 0.7708 0.7357 0.6536 0.5762 0.5232
M3 0.6595 0.5924 0.6254 0.8482 0.7357 0.6571 0.5762 0.5161
M4 0.6585 0.5822 0.6234 0.8127 0.7429 0.6571 0.5690 0.5250

Borda 0.6509 0.5778 0.6210 0.7577 0.7357 0.6464 0.5667 0.5179
MNZ 0.6588 0.5903 0.6274 0.8214 0.7357 0.6536 0.5738 0.5286

Outrank 0.6477 0.5811 0.6164 0.7575 0.7214 0.6500 0.5643 0.5179
Sum 0.6588 0.5903 0.6274 0.8214 0.7357 0.6536 0.5738 0.5286

Clustering. The main challenge in the clustering problem is to
select a good set of ` representative services, so that each one
of the remaining matched services is sufficiently close (and,
hence, effectively clustered) to one of these representatives.
Thus, the quality of this process is quantified by the value of
the representation error (see Equation 8).

Figure 10 displays the representation error for our two
algorithms, ASC and HSC, averaged over the 28 requests in
the collection OWLS-TC v2. As shown, ASC, which relies
on farthest neighbor searches, is more effective in selecting
good representatives. This is because HSC relies instead on
the use of the space filling curve to order and then partition
the objects. Although the space filling curve tries to preserve
the proximities among objects, the dimensionality reduction
from d to 1 inevitably introduces more error. Still, for a small
number of clusters (up to 3), we notice that the difference in
the representation error is small. This is because ASC starts
with a randomly selected object as the first representative.
Thus, for small values of ` the representation error is affected
by this selection. Moreover, as will be shown in Section 6.2,
HSC is typically much faster than ASC. Therefore, ASC
appears to be also an appealing technique for clustering Web



SKOUTAS et al.: RANKING AND CLUSTERING WEB SERVICES USING MULTI-CRITERIA DOMINANCE RELATIONSHIPS 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5

R
e

p
re

s
e

n
ta

ti
o

n
 e

rr
o

r

Number of representatives

HSC
ASC

Fig. 10. Clustering: representation error

service search results.

6.2 Computational Cost

Experimental setup. We use a publicly available generator
(http://randdataset.projects.postgresql.org/) to create data sets for
studying the computational cost of our ranking and clustering
algorithms. The examined parameters and their correspond-
ing values are summarized in Table 3. N , k, and ` refer,
respectively, to the number of available services, the number of
top results, and the number of clusters to return. The number
of parameters in the service request, i.e., the dimensionality
of each match instance, is denoted with d. M corresponds
to the number of distinct matching criteria employed by
the service matchmaker, i.e., the number of instances per
match object. Given a similarity measure, corr denotes the
correlation among the degrees of match for the parameters of
a service and takes 3 values. In independent (ind), degrees
of match are assigned independently to each parameter; in
correlated (cor), the values in the match instance are positively
correlated, i.e., a good match in some service parameters
increases the possibility of a good match in the others; in anti-
correlated (ant) the values are negatively correlated, i.e., good
matches (or bad matches) in all parameters are less likely to
occur. Parameter var controls the variance of results among
similarity metrics. When var is low, matching scores from
different criteria are similar. Hence, the instances of the same
match object are close to each other in the d-dimensional
space. On the other hand, when var is high, the matching
scores from different criteria are dissimilar and, consequently,
instances are far apart. We report our measures for variance
around 10% (low) and 20% (high). In each round of the
experiments, we investigate the effect of one parameter, while
setting the remaining ones to their default values, shown bold
in Table 3. As a default scenario, we consider a request with 4
parameters, asking for the top-30 matches or 3 clusters among
a set of 5K partially matching service descriptions, using 4
different similarity measures.

TABLE 3
Parameters and examined values

Parameter Symbol Values
Number of services N [1, 10]K, 5K
Number of top results k 10, 20, 30, 40, 50
Number of clusters ` 2, 3, 4, 5
Number of dimensions d 2, 4, 6, 8, 10
Number of instances M 2, 4, 6, 8, 10
Parameter correlation corr ind, cor, ant
Instance variance var low, high

Ranking. We first provide a theoretical analysis, and then we
report our experimental findings on the synthetically generated
data sets described above.
Theoretical Analysis. To determine the dominated and domi-
nating scores, our methods need to compare the instances of all
services with each other, in the worst case. In total, there are
N ·M instances (i.e., M match instances per service), hence
we perform O(N2M2) dominance checks. For any pair of
instances, a dominance check needs to examine the PDMs for
all d parameters. As a result, the complexity is O(dN2M2).
Clearly, this is a worst-case bound, as our algorithms need
only find the top-k dominant services and employ various
optimizations for reducing the number of dominance checks.

For the sake of comparison, we also briefly discuss the
computational cost of the fusion techniques considered in
Section 6.1. These take as input M lists, one for each
criterion, containing the N advertised services ranked in
decreasing order of their overall degree of match with the
request. Therefore, an aggregation of the individual parameter-
wise scores is required. CombSum, CombMNZ and Borda-
fuse scan the lists, compute a fused score for each service
and output the results sorted by this score. This procedure
costs O(NM +N logN), where the first (second) summand
corresponds to scanning (sorting). The Outranking method
computes the fused score in a different manner: for each
pair of services it counts agreements and disagreements as to
which is better in the ranked lists. Therefore, its complexity is
O(N2M). Note that all fusion techniques are independent of d
due to the reduction of the individual scores to a single overall.
In practice, the performance of TKDG and TKM resembles
that of the Outranking method, while TKDD’s is similar to
the other fusion approaches. For ease of presentation, in the
remaining, we focus only on the three proposed methods.
Experimental Results. Overall, the experiments indicate that
TKDD is the most efficient method. As already discussed in
Section 4.3, TKDD is interested in objects that dominate the
top match objects; hence, it searches a relatively small portion
of the data set. On the contrary, the search space for TKDG
is significantly larger, so its delay is expected. Similarly, the
performance of TKM suffers mainly due to the impact of dgs
score; therefore, it is reasonable that it follows the same trend
as TKDG, with a slight additional overhead for accounting for
the dds score, as well. These observations are more apparent in
Figure 11(a), where it can be seen that TKDD is very slightly
affected, as opposed to TKDG and TKM, by the size of the
data set. Another interesting observation refers to the effect
of the dimensionality (Figure 11(d)), which at higher values
becomes noticeable even for TKDD. This, in fact, is a known
problem faced by the skyline computation approaches as well.
As the dimensionality increases, it becomes increasingly more
difficult to find instances dominating other instances; hence,
more dominance checks need to be performed. A possible
work-around is to group together related service parameters
so as to decrease the dimensionality of the match objects. For
the same reasons, a similar effect is observed in Figure 11(e).
For correlated data sets, where many successful dominance
checks occur, the computational cost for all methods drops



14 IEEE TRANSACTIONS ON SERVICES COMPUTING

 0

 2000

 4000

 6000

 1  2  3  4  5  6  7  8  9  10

T
im

e 
(m

se
c)

Number of services (K)

TKDD

TKDG

TKM

 0

 2000

 4000

 6000

 1  2  3  4  5  6  7  8  9  10

T
im

e 
(m

se
c)

Number of services (K)

TKDD

TKDG

TKM

(a) Effect of N

 0

 500

 1000

 1500

 2000

 10  20  30  40  50

T
im

e 
(m

se
c)

Top-k

TKDD

TKDG

TKM

 0

 500

 1000

 1500

 2000

 10  20  30  40  50

T
im

e 
(m

se
c)

Top-k

TKDD

TKDG

TKM

(b) Effect of k

 0

 3000

 6000

 9000

 12000

 2  4  6  8  10

T
im

e 
(m

se
c)

Number of measures

TKDD

TKDG

TKM

 0

 3000

 6000

 9000

 12000

 2  4  6  8  10

T
im

e 
(m

se
c)

Number of measures

TKDD

TKDG

TKM

(c) Effect of M

 0

 3000

 6000

 9000

 12000

 2  4  6  8  10

T
im

e 
(m

se
c)

Number of dimensions

TKDD

TKDG

TKM

 0

 3000

 6000

 9000

 12000

 2  4  6  8  10

T
im

e 
(m

se
c)

Number of dimensions

TKDD

TKDG

TKM

(d) Effect of d

 0

 2000

 4000

 6000

ind cor
ant

T
im

e 
(m

se
c)

Correlation of service parameters

TKDD
TKDG

TKM

 0

 2000

 4000

 6000

ind cor
ant

T
im

e 
(m

se
c)

Correlation of service parameters

TKDD
TKDG

TKM

(e) Effect of corr

Fig. 11. Ranking: low (left) and high (right) var

close to zero. On the contrary, for anti-correlated data sets,
few dominance checks are successful and the computational
cost is significantly larger.

Therefore, the final choice of the appropriate ranking
method depends on the application. All three proposed mea-
sures produce significantly more effective results than the
previously known approaches. If an application favors more
accurate results, then TKM seems as an excellent solution. If
the time factor acts as the driving decision point, then TKDD
should be favored, since it provides high quality results (see
Figure 9) almost instantly (see Figure 11).

 0

 100

 200

 300

 400

 1  2  3  4  5  6  7  8  9  10

T
im

e 
(m

se
c)

Number of services (K)

ASC

HSC

 0

 100

 200

 300

 400

 1  2  3  4  5  6  7  8  9  10

T
im

e 
(m

se
c)

Number of services (K)

ASC

HSC

(a) Effect of N

 0

 100

 200

 300

 2  3  4  5

T
im

e 
(m

se
c)

Number of clusters

ASC

HSC

 0

 100

 200

 300

 2  3  4  5

T
im

e 
(m

se
c)

Number of clusters

ASC

HSC

(b) Effect of `

 0

 200

 400

 600

 800

 1000

 2  4  6  8  10

T
im

e 
(m

se
c)

Number of measures

ASC

HSC

 0

 200

 400

 600

 800

 1000

 2  4  6  8  10

T
im

e 
(m

se
c)

Number of measures

ASC

HSC

(c) Effect of M

 0

 200

 400

 600

 2  4  6  8  10

T
im

e 
(m

se
c)

Number of dimensions

ASC

HSC

 0

 200

 400

 600

 2  4  6  8  10
T

im
e 

(m
se

c)

Number of dimensions

ASC

HSC

(d) Effect of d

 0

 200

 400

 600

ind cor
ant

T
im

e 
(m

se
c)

Correlation of service parameters

ASC
HSC

 0

 200

 400

 600

ind cor
ant

T
im

e 
(m

se
c)

Correlation of service parameters

ASC
HSC

(e) Effect of corr

Fig. 12. Clustering: low (left) and high (right) var

Clustering. Next, we measure the performance of the al-
gorithms ASC and HSC on the same synthetic data sets
discussed above, starting first with a brief theoretical analysis
and then presenting the experimental findings.
Theoretical Analysis. Both algorithms, ASC and HSC, first
rely on function SRC to compute the set of objects S with
non-zero skyline score. Recall that this computation is based
on Property 5. Thus, similar to the corresponding analysis
for the ranking algorithms, the complexity of this process is
O(dN2M), since for each pair of match objects U and V , all



SKOUTAS et al.: RANKING AND CLUSTERING WEB SERVICES USING MULTI-CRITERIA DOMINANCE RELATIONSHIPS 15

instances u of U need to be checked against vmin of V . Then,
ASC proceeds with selecting the ` representatives by means
of farthest neighbor searches, where the distance between two
objects is computed as the median of the distances of their
instances. The cost for each search is O(d|S|M2). Hence, the
complexity of ASC is O(dN2M + `d|S|M2). On the other
hand, HSC only scans S once, partitioning it according to
the ordering imposed by the space filling curve. Hence, the
complexity of HSC is O(dN2M + |S|).
Experimental Results. Figure 12 presents the experimental
results for the algorithms ASC and HSC, using the data sets
synthetically generated according to the parameters in Table 3.
In general, all experiments indicate that HSC is more efficient
than ASC. The main reason for this performance is the
expensive farthest neighbor searches that ASC uses, whereas
HSC is accelerated by the heuristic described in Section 5.3.
In particular, Figure 12(a) demonstrates that HSC is more
robust with respect to the number of services for both low and
high variance. On the other hand, ASC demonstrates a lower
performance, which is slightly worse for high variance. Similar
trends appeared when we experimented with the number of
clusters (Figure 12(b)). For both low and high variance ASC
performs much worse, while HSC reveals a robust perfor-
mance. Figure 12(c) examines the case of varying the number
of instances, where HSC scales considerably better than ASC.
Figure 12(d) portrays the effect of dimensionality. Similar to
the case of ranking, the processing time of clustering increases
with dimensionality, which is a known challenge faced also
by all skyline computation approaches. Finally, Figure 12(e)
demonstrates the behavior of both techniques for different
distributions of the degrees of match of service parameters.
Both algorithms perform well, except for the case of anti-
correlated data distributions, where ASC presents significant
delays. Essentially, an anti-correlated distribution implies a
larger number of objects with non-zero skyline score, and
therefore an increased cost for the farthest neighbor searches.

Summarizing, the choice depends on the desired trade-off
between accuracy and efficiency. ASC produces more accurate
results, whereas HSC provides a more balanced solution
between accuracy and efficiency.

7 CONCLUSIONS
In this paper, we have addressed ranking and clustering of
Web service search results and proposed methods based on
the notion of dominance, which apply multiple matching
criteria without aggregating the match scores of individual
service parameters. We have presented three algorithms for
ranking the search results, and two algorithms for selecting
the most representative services for clustering, so that the
produced clusters reflect the trade-offs between the matched
parameters. An extensive experimental evaluation validates the
effectiveness and efficiency of our approach.

REFERENCES
[1] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Simi-

larity Search for Web Services,” in VLDB, 2004, pp. 372–383.
[2] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara, “Semantic

Matching of Web Services Capabilities.” in ISWC, 2002, pp. 333–347.

[3] M. Klusch, B. Fries, and K. P. Sycara, “Automated Semantic Web service
discovery with OWLS-MX,” in AAMAS, 2006, pp. 915–922.

[4] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere, and T. K. Sellis,
“Top-k Dominant Web Services under Multi-criteria Matching,” in
EDBT, 2009, pp. 898–909.

[5] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines on
Uncertain Data,” in VLDB, 2007, pp. 15–26.

[6] J. Colgrave, R. Akkiraju, and R. Goodwin, “External Matching in
UDDI,” in ICWS, 2004, p. 226.

[7] J. Cardoso, “Discovering Semantic Web Services with and without a
Common Ontology Commitment,” in IEEE SCW, 2006, pp. 183–190.

[8] D. Skoutas, A. Simitsis, and T. Sellis, “A Ranking Mechanism for
Semantic Web Service Discovery,” in IEEE SCW, 2007, pp. 41–48.

[9] U. Bellur and R. Kulkarni, “Improved Matchmaking Algorithm for
Semantic Web Services Based on Bipartite Graph Matching,” in ICWS,
2007, pp. 86–93.

[10] W.-T. Balke and M. Wagner, “Cooperative Discovery for User-Centered
Web Service Provisioning,” in ICWS, 2003, pp. 191–197.

[11] F. Kaufer and M. Klusch, “WSMO-MX: A Logic Programming Based
Hybrid Service Matchmaker,” in ECOWS, 2006, pp. 161–170.

[12] J. Caverlee, L. Liu, and D. Rocco, “Discovering and Ranking Web
Services with BASIL: A Personalized Approach with Biased Focus,”
in ICSOC, 2004, pp. 153–162.

[13] J. Ma, Y. Zhang, and J. He, “Efficiently Finding Web Services Using a
Clustering Semantic Approach,” in CSSSIA, 2008, p. 5.

[14] S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline Operator,” in
ICDE, 2001, pp. 421–430.

[15] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with Presort-
ing,” in ICDE, 2003, pp. 717–816.

[16] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline
evaluation,” ACM TODS, vol. 33, no. 4, pp. 1–45, 2008.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive Skyline Compu-
tation in Database Systems,” ACM TODS, vol. 30, no. 1, pp. 41–82,
2005.

[18] K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee, “Approaching the Skyline
in Z Order,” in VLDB, 2007, pp. 279–290.

[19] M. L. Yiu and N. Mamoulis, “Efficient Processing of Top-k Dominating
Queries on Multi-Dimensional Data,” in VLDB, 2007, pp. 483–494.

[20] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
“Finding k-dominant Skylines in High Dimensional Space,” in SIGMOD,
2006, pp. 503–514.

[21] W.-T. Balke, U. Güntzer, and C. Lofi, “Eliciting Matters - Controlling
Skyline Sizes by Incremental Integration of User Preferences,” in
DASFAA, 2007, pp. 551–562.

[22] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting Stars: The k Most
Representative Skyline Operator,” in ICDE, 2007, pp. 86–95.

[23] Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-based representative
skyline,” in ICDE, 2009, pp. 892–903.

[24] J. A. Aslam and M. H. Montague, “Models for Metasearch,” in SIGIR,
2001, pp. 275–284.

[25] M. H. Montague and J. A. Aslam, “Condorcet Fusion for Improved
Retrieval,” in ACM CIKM, 2002, pp. 538–548.

[26] M. Farah and D. Vanderpooten, “An Outranking Approach for Rank
Aggregation in Information Retrieval,” in SIGIR, 2007, pp. 591–598.

[27] E. A. Fox and J. A. Shaw, “Combination of Multiple Searches,” in 2nd
TREC, NIST, 1993, pp. 243–252.

[28] J.-H. Lee, “Analyses of Multiple Evidence Combination,” in SIGIR,
1997, pp. 267–276.

[29] C. C. Vogt and G. W. Cottrell, “Fusion Via a Linear Combination of
Scores,” Information Retrieval, vol. 1, no. 3, pp. 151–173, 1999.

[30] L. Si and J. Callan, “CLEF 2005: Multilingual Retrieval by Combining
Multiple Multilingual Ranked Lists,” in Proceedings of the 6th Workshop
of the Cross-Language Evalution Forum, 2005, pp. 121–130.

[31] S. Cetintas and L. Si, “Exploration of the Tradeoff Between Effective-
ness and Efficiency for Results Merging in Federated Search,” in SIGIR,
2007, pp. 707–708.

[32] D. Lillis, F. Toolan, R. W. Collier, and J. Dunnion, “ProbFuse: A
Probabilistic Approach to Data Fusion,” in SIGIR, 2006, pp. 139–146.

[33] O. Zamir and O. Etzioni, “Grouper: A Dynamic Clustering Interface
to Web Search Results,” Computer Networks, vol. 31, no. 11-16, pp.
1361–1374, 1999.

[34] S. Osinski, J. Stefanowski, and D. Weiss, “Lingo: Search Results
Clustering Algorithm Based on Singular Value Decomposition,” in
Intelligent Information Systems, 2004, pp. 359–368.

[35] S. Papadopoulos, D. Sacharidis, and K. Mouratidis, “Continuous Medoid
Queries over Moving Objects,” in SSTD, 2007, pp. 38–56.



16 IEEE TRANSACTIONS ON SERVICES COMPUTING

[36] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Re-
trieval. ACM Press / Addison-Wesley, 1999.

[37] M. Klusch and B. Fries, “Hybrid OWL-S Service Retrieval with OWLS-
MX: Benefits and Pitfalls,” in SMRR, 2007.

Dimitrios Skoutas is a Postdoctoral researcher
at the L3S Research Center, Germany. He re-
ceived his Diploma on Electrical and Computer
Engineering and his PhD in Computer Science
from the National Technical University of Athens
(NTUA) in 2003 and 2008, respectively. He has
worked as a researcher at the Knowledge and
Database Systems Lab at NTUA and at the Insti-
tute for the Management of Information Systems
(IMIS). His research interests focus on semantic
web services and web information retrieval.

Dimitris Sacharidis is a Marie Curie Postdoc-
toral Fellow at the Institute for the Manage-
ment of Information Systems, Greece, and at
the Hong Kong University of Science and Tech-
nology. He received his BSc degree from the
National Technical University of Athens, his MSc
degree from the University of Southern Califor-
nia, and his PhD degree in Computer Science
from the National Technical University of Athens.
His research interests include data streams, pri-
vacy, security, and ranking in databases.

Alkis Simitsis is a researcher in the Intelli-
gent Information Management Lab at Hewlett
Packard. He obtained his Diploma on Electri-
cal and Computer Engineering and his PhD in
Computer Science from the National Techni-
cal University of Athens (NTUA) in 2000 and
2004, respectively. He has worked as a PostDoc
researcher at the Computer Science group at
IBM’s Almaden Research Center, and he was a
research visitor at Infolab at Stanford University.
His research interests include data warehouses,

ETL processes, query processing, keyword search, and web services.

Timos Sellis is the Director of the Institute
for the Management of Information Systems
(IMIS) and a Professor at the Computer Sci-
ence Division of the National Technical Univer-
sity of Athens (NTUA), Greece. He received his
Diploma in Electrical Engineering from NTUA,
his MSc degree from Harvard University, and his
PhD from the University of California at Berkeley,
where he was a member of the INGRES group.
He was an Associate Professor at the Depart-
ment of Computer Science of the University of

Maryland, College Park. He has received the Presidential Young Inves-
tigator award for 1990-1995 and the VLDB 1997 10 Year Paper Award
for his work on spatial databases. He was the president of the National
Council for Research and Technology of Greece (2001-2003) and a
member of the VLDB Endowment (1996-2000). His research interests
include data streams, peer-to-peer databases, data warehouses, the
integration of Web and databases, and spatio-temporal databases.


