GLANCE: Global Actions in a Nutshell for Counterfactual Explainability

Anonymous Authors'

Abstract

Counterfactual explanations have emerged as an
important tool to understand, debug, and audit
complex machine learning models. To offer
global counterfactual explainability, state-of-the-
art methods construct summaries of local expla-
nations, offering a trade-off among conciseness,
counterfactual effectiveness, and counterfactual
cost or burden imposed on instances. In this work,
we provide a concise formulation of the problem
of identifying global counterfactuals and establish
principled criteria for comparing solutions, draw-
ing inspiration from Pareto dominance. We intro-
duce innovative algorithms designed to address
the challenge of finding global counterfactuals for
either the entire input space or specific partitions,
employing clustering and decision trees as key
components. Additionally, we conduct a compre-
hensive experimental evaluation, considering var-
ious instances of the problem and comparing our
proposed algorithms with state-of-the-art meth-
ods. The results highlight the consistent capability
of our algorithms to generate meaningful and in-
terpretable global counterfactual explanations.

1. Introduction

Complex machine learning models are used in critical real-
world decision-making applications, such as loan approvals
or hiring. This creates the need to explain these models
and provide users with insights into how they should act to
obtain the desired prediction results (Miller, 2019). Coun-
terfactual explanations have gathered extensive attention as
they can be interpretable (Wachter et al., 2017), actionable
(Ustun et al., 2019), and suitable as a means to achieve algo-
rithmic recourse (Karimi et al., 2020) and audit for model
fairness (Sharma et al., 2019). Put simply in the context of
a classification task, a counterfactual explanation describes
changes to the feature values, which we hereafter call an
action, that one needs to apply to reverse an unfavorable
decision. We hereafter simply consider the positive as the
favorable class.

By definition, a counterfactual explanation applies for a par-
ticular negative instance and thus offers local explainability.

However, there are several use cases that would benefit from
a global counterfactual explainability method, meaning that
it can counterfactually explain any negative instance from
the model’s feature space. Trivially, the set of all local coun-
terfactual explanations can serve this function, but at the
cost of being non-interpretable and thus self-defeating. We
define global counterfactual explainability as a small set of
global actions such that they collectively cover the entire
feature space.

Global counterfactual explainability can assist for example
in: (1) model understanding and debugging, by presenting
contrastive evidence and highlighting the main causal asso-
ciations encoded by the model (Rawal & Lakkaraju, 2020;
Ley et al., 2023); (2) policy making, by suggesting hori-
zontal actions or interventions towards recourse (Kanamori
et al., 2022); (3) fairness auditing, by comparing recourse
options for subpopulations (Ustun et al., 2019; Sharma et al.,
2019; Kavouras et al., 2023).

In this work, we further distinguish between two types of
global counterfactual explainability. In a counterfactual
summary, there is no explicit connection between instances
and actions, implying that each instance can achieve re-
course (if possible) through any global action. The goal here
is to condense all local counterfactual explanations down to
a small set of actions. In a counterfactual segmentation, the
feature space is segmented into interpretable partitions and
each global action applies to all instances within a partition,
creating thus an explicit connection between a partition and
a global action. The goal here is to find actions that lead to
recourse for negative instances and best segment the feature
space.

Finding a compact set of actions is a challenging problem
that inherently involves trade-offs. In addition to small car-
dinality, the selected action sets are ideally characterized
by (1) high effectiveness, i.e., act as counterfactual expla-
nations for numerous instances (also known as correctness
in (Rawal & Lakkaraju, 2020), and coverage in (Ley et al.,
2023)), and (2) low cost, i.e., entail few and small changes
to instances. At one extreme, the set of local counterfactuals
theoretically! achieves the best cost and effectiveness, at
the expense of having cardinality proportional to the data

'In practice, model agnostic counterfactuals are discovered by
heuristic search and may not be cost-optimal.

size. For global counterfactual explainability, concessions
are necessary.

ARES (Rawal & Lakkaraju, 2020) sets as its objective a
weighted combination of cardinality, cost, and effectiveness,
and asks the user to decide what are meaningful weights. As
a result, the global counterfactual explanations derived by
ARES are highly sensitive to these weights, and their cost
and effectiveness vary greatly. Similarly, CET (Kanamori
et al., 2022) defines a linear combination of cost and ef-
fectiveness, while constraining cardinality, and implements
a heuristic search to identify a good segmentation of the
feature space. Consequently, the quality of the action set
varies greatly. GLOBE-CE (Ley et al., 2023) aims for high
effectiveness primarily and low cost secondarily, as it finds
a few highly effective actions, and then scales them down to
minimize cost. GLOBE-CE trades off cardinality for cost,
since scaling down a single effective action results in a large
number of micro-actions.

We introduce a novel approach to global counterfactual ex-
plainability, termed Global Actions in a Nutshell for Coun-
terfactual Explainability (GLANCE). Figure 1 presents a
counterfactual summary consisting of three global actions
derived by GLANCE for a Logistic Regression classifier
trained over the HELOC dataset. Table 1 quantitatively
compares the action sets derived by GLANCE with those
from local counterfactual explainability (Local CE) and by
GLOBE-CE. Note that Local CE returns an action for each
instance and achieves perfect effectiveness and good cost.
GLOBE-CE can improve on the cost with a small drop in
effectiveness while bringing down the number of actions to
half. Nonetheless, the action set of GLOBE-CE is long and
unsuitable for inspection and interpretation by humans. In
contrast, GLANCE offers an easily interpretable action set
of cardinality three (Figure 1) that has optimal effectiveness
with a negligible hit in cost.

Contribution On the conceptual side, the main contribu-
tion of this work is that we provide a concise formulation for
the problem of finding explainable, acceptable in terms of
cost, and highly effective global counterfactuals considering
(1) the entire input space (2) predefined partitions of the
input space. Additionally, we establish principled criteria
for comparing solutions to this problem, based on Pareto
dominance. These criteria provide a systematic approach
for evaluating and comparing different solutions.

On the technical side, in GLANCE framework, we propose
two algorithms for finding counterfactual summaries. These
algorithms build on two simple observations, (a) similar
instances can be explained by similar actions, and (b) similar
actions can be replaced by a single action with minimal
impact on cost and effectiveness. Therefore, the algorithms
perform agglomerative clustering considering distances both
in the feature space and the action space. Furthermore, we

ACTIONS :
(1) NumlIngLast6Mexcl7days + 9.1
(2) NumlIngLast6Mexcl7days + 13.87 & NumSatisfactoryTrades — 0.75
(3) NumlIngLast6Mexcl7days + 10.27

Figure 1. Suggested actions (Algorithm 1) for HELOC dataset-LR
model.

Table 1. Cardinality, cost, and effectiveness of the action sets gen-
erated by different methods for the HELOC dataset. "LOCAL CE”
refers to local counterfactuals generated from DiCE. (Mothilal
et al., 2020)

METHOD ACTIONS COST EFFECTIVENESS
ALGORITHM 1 3 1.38 100.00%
GLOBE-CE 588 0.41 99.90%
LocAL CE 1045 1.16 100.00 %

propose an algorithm for counterfactual segmentation. The
idea is to iteratively divide the space, finding a split that
improves the aggregate effectiveness.

The benefits of GLANCE over the state-of-the-art are exper-
imentally validated by considering four widely used datasets
and three different classification models.

Structure Section 2 overviews related work. Section 3 for-
mulates global counterfactual explainability, and Sections 4
and 5 introduce our algorithms for counterfactual summaries
and segmentation, respectively. Section 6 presents an evalua-
tion framework, and Section 7 presents experimental results.
Section 8 draws a conclusion, and Section 9 discusses the
impact of our work.

2. Related Work

Local Counterfactual Explanations In the last years,
there has been a plethora of work in explainable machine
learning (XAI) (Bodria et al., 2023), with an emphasis
on counterfactual explanations (Verma et al., 2020). An
overview of methods on algorithmic recourse, which aims
to provide explanations and recommendations to individuals
unfavorably treated by automated decision-making systems
can be found in the survey by Karimi et al. (2020). These
methods can be model-agnostic or model-specific (e.g., for
trees (Carreira-Perpinan & Hada, 2021)); they may focus
on different properties (e.g., the diversity of explanations
(Mothilal et al., 2020), the feasibility of explanations (Ustun
et al., 2019), etc.); and can be either local or global.

Global Counterfactual Explanations Various frame-
works have been proposed to offer global explanations.
A common approach provides synthesizing or aggregat-
ing local explanations to generate global explanations (Pe-
dreschi et al., 2019; Lundberg et al., 2020; Gao et al., 2021).
Lakkaraju et al. (2019) aims to explain how a model behaves
in subspaces characterized by certain features of interest.

Building on this work, Rawal & Lakkaraju (2020) intro-
duced a model agnostic framework called Actionable Re-
course Summaries (AReS) to construct global counterfac-
tual explanations that provide an interpretable and accu-
rate summary of recourses for the entire population, uti-
lizing a two-level decision set description. Additionally,
Kanamori et al. (2022) proposed a framework called Coun-
terfactual Explanation Tree (CET) that assigns effective ac-
tions with decision trees, ensuring transparency through the
interpretability of decision trees and consistency through the
discrete partitions of the decision tree. Despite their inter-
pretability, both AReS and CET fail to address the trade-off
between cost and effectiveness.

To overcome this trade-off, Ley et al. (2023) defines global
counterfactual explanations as a comprehensive direction in
which a cluster of inputs can collectively adjust their predic-
tions. They suggest a framework called Global and Efficient
Counterfactual Explanations (GLOBE-CE), which is the
first framework to provide global explanations in a compu-
tationally efficient manner. Although it generally achieves
high effectiveness (coverage) and low cost, the global ex-
planation consists of a high number of micro-actions, one
for each individual, potentially failing the requirement for
global counterfactuals to consist of a limited number of ac-
tions. Finally, Kavouras et al. (2023) suggests auditing sub-
group fairness through counterfactual explanations, propos-
ing a framework called Fairness Aware Counterfactuals for
Subgroups (FACTS), which formulates the difference in the
difficulty of groups to achieve recourse as a metric of bias.

3. Preliminaries and Problem Formulation

We first provide basic definitions and then formulate the two
global counterfactual explainability problems.

3.1. Preliminaries

We consider a feature space F? = Fy x --- x F; and
a binary classifier » : 'Y — {—1,1} where the positive
outcome is the favorable one. For a given h, we focus on
the dataset X, C F of adversely affected individuals,
i.e., those who receive the unfavorable outcome.

We denote as A the set of all possible actions, where an
action a € A is a set of changes to feature values, e.g.,
a = {country — US, education-num — 42}, which, when
applied to an instance x € X,¢, results in a counterfactual
instance =’ = a(x). Every action « has a cost, denoted as
cost(a, x), and is effective for an instance z if h(a(z)) =
h(z") = 1. The recourse cost rc(A,x) of an instance x
is the minimum cost incurred from an effective action in

ACA:

rc(A, z) = min{cost(a, x)|a € A : h(a(x)) =1}

Let X = {z € Xu|h(a(z)) = 1,a € A} be the set
of instances that flip their prediction by using one of the
actions in A, then the effectiveness of the actions for the
affected instances is defined as:

X
efF(A, Xaff) - l(f|f ‘ 5

and their cost as:

> re(A, x)
avc(A, Xaff) = reX |X|

Finally, let size(A) be a function returning the cardinality
of aset A.

3.2. Problem Formulation

Initially, we define the challenge of identifying global coun-
terfactuals, anchoring the definition in the essential prop-
erties demanded by existing state-of-art works, such as
Rawal & Lakkaraju (2020); Kanamori et al. (2022); Ley
et al. (2023).

Problem 1 (Global Counterfactuals). A global counterfac-
tual for Xy is a set S C A, S # 0 that represents a solution
to the following multi-objective optimization problem:

1. minimize size(S)
SCA

2. minimize avc(S, X
niny (S, Xafr)

3. magcérﬂlze eff (S, Xatr)

A good solution to Problem 1 is a small set of actions that,
when employed collectively, have maximum effectiveness
and minimal cost. The requirement for a small set of actions
is to enhance the interpretability of the explanation. This
can be also expressed as a constraint to the set size that we
can afford. In this case, the first objective of Problem 1 is
replaced by the constraint

size(S) < t,
where ¢ is a small positive integer.

Nevertheless, numerous practical scenarios demand tailored
actions for each subpopulation. Motivated by this fact, we
introduce a specialization of the problem, aiming to identify
impactful solutions for distinct segments within the affected
population.

Problem 2 (Global Counterfactuals for Partition). Given a
subset of the features F, a set of global counterfactuals for
a partition is a tuple (P, A), where P = {Py, Ps,..., P;}
partitions Xy based on the features in F and A =
{a1,a2,...,a:} is a set of t counterfactual actions, where
each a; is uniquely assigned to the partition P; and repre-
sents a solution to the following multi-objective optimization
problem:

1. minimize avc(a, P;)
aCA

2. maximize eff (a, P;)
aCA

Given the emphasis of Problem 2 on specific subgroups
within the affected population, it is crucial to grant the
company the flexibility to determine the targeted features.
Therefore, we provide the user with the ability to select the
desired features F', which will define the partition. Finally,
in accordance with (Kanamori et al., 2022), each subgroup
(partition) should be linked to a single action, promoting
both consistency and transparency.

4. Algorithms for Problem 1

We address Problem 1 employing an agglomerative ap-
proach. The core idea is to establish multiple small clusters
and determine representative actions for each. The initial
clusters will undergo merging using one of our two pro-
posed procedures until the predetermined number of desired
clusters is achieved. Ultimately, from each cluster, a single
optimal action will be extracted with universal applicability
across all instances. Intuitively, we want to exploit the idea
that “similar individuals are expected to achieve recourse
with similar counterfactual actions”, and use the notion of
proximity in both the original feature space and the action
space.

The first algorithm, denoted as Iterative Merges and out-
lined in Algorithm 1, follows a procedure primarily designed
to enhance the effectiveness metric. Conversely, the second
algorithm, named Augmented Space and described in Al-
gorithm 2, adopts a strategy focused on optimizing the cost
metric. Both algorithms undergo two phases. The initial
phase, common to both methods, involves the generation
of multiple small clusters and corresponding counterfactual
actions for each cluster. The subsequent phase consists of
merging the initial clusters down to a predefined small num-
ber and extracting a single optimal action from each of the
merged clusters.

Phase 1: Initial clusters and actions generation. The
primary objectives of the first phase, which is common in
Algorithm 1 and Algorithm 2, are twofold: (1) to initiate
actions from various widely distributed points within the
input space, and (2) to guide these actions towards diverse
directions leading to the decision boundary. To realize these
objectives, the input space is partitioned into k clusters (line
2, Algorithms 1 and 2), and a local counterfactual method
is employed to generate m counterfactuals actions for each
cluster, resulting in a total of km actions. This process
can be executed by either sampling m instances from each
cluster and applying the local counterfactual method to each
sample within the cluster, or by computing the centroid
of each cluster and generating m counterfactuals for each

Algorithm 1 Iterative Merges

1: Input: X,¢, number of local counterfactuals m, number of

initial clusters k£, number of final clusters ¢

2: Output: ¢ global counterfactuals

: Cluster X,¢ into k clusters.

4: For each cluster, generate m counterfactuals from the cluster

centroid.

: While the number of clusters exceeds ¢:

For each pair of clusters:

7: Compute the distance d between their centroids and the
distance d’ between the centroids of their associated
counterfactual instances.

8: Merge the two clusters exhibiting the minimum distance
sum d + d’ and inherit their counterfactual actions to the
merged cluster.

9: Return the single optimal action from each of the ¢ clusters.

[9¥]

AR

centroid (as described in line 4, Algorithms 1 and 2).

Phase 2: Merging and final actions extraction. The goal
of this phase is to identify a set of effective actions with
low average cost, and a small predefined size as a solution
to Problem 1, based on the output of Phase 1. To achieve
this, two strategies are employed, each using a distinct ap-
proach to merge the initial k clusters into a smaller set of
t clusters, from which a single optimal action is extracted
for each cluster. Both methods aim to generate solutions
with optimal effectiveness and average cost, with the It-
erative Merges strategy prioritizing effectiveness, and the
Augmented Space strategy prioritizing average cost.

Given the initial k clusters and the set of km actions, the
Iterative Merges strategy combines clusters based on both
their inherent proximity and the proximity of their respec-
tive actions. In each iteration, we calculate, for every pair
of clusters, the sum of the distance between their centroids
and the distance of the centroids of their associated coun-
terfactuals (which are generated from the cluster centroids)
(lines 67, Algorithm 1). Subsequently, the two clusters
that minimize this combined distance metric are merged,
concluding the iteration (line 8, Algorithm 1). The algo-
rithm continues until the initial k clusters are merged into ¢
clusters. Subsequently, a single optimal action is extracted
from each of these clusters, and the algorithm returns the
set of these ¢ counterfactual actions (line 9, Algorithm 1).

The second algorithm, named Augmented Space, trans-
forms the initial &k clusters utilizing their respective m ac-
tions through the following procedure: For each instance,
it identifies the single action from its cluster that flips its
class to the positive and has the minimum cost> (lines 6-7,
Algorithm 2). The feature vector of the instance is then
concatenated with the feature vector of its action (line 8,

The feature vector of the action has d entries, where each
entry represents the value of the change at the respective feature,
e.g., (0,41, 0) means increasing the second feature by one. If no
cluster action flips the class of the instance, then the feature vector
of the action for this instance has zero values in all entries.

Algorithm 2 Augmented Space

Algorithm 3 Counterfactual Tree

1: Input: X,¢, number of local counterfactuals m, number of
initial clusters k£, number of final clusters ¢

: Output: ¢ global counterfactuals

: Cluster X,¢ into k clusters.

: For each cluster, generate m counterfactuals from the cluster
centroid.

: For each instance z;:

Find the cluster actions A; that flip its prediction.

Find minimum cost action a; from A;.

Concatenate x; and a;.

: Cluster the augmented data into ¢ clusters.

: Return the single optimal action from each of the ¢ clusters.

AW

VR IIWN

—_

Algorithm 2), resulting in a new, augmented space. Subse-
quently, a clustering algorithm is applied to the augmented
space, producing ¢ clusters (line 9, Algorithm 2). These ¢
clusters consist of instances that include their minimal cost-
effective action in their feature vector. Consequently, we
can extract the unique actions from each cluster and select
the most effective for each cluster (line 10, Algorithm 2).

Iterative Merges prioritizes effectiveness by merging clus-
ters that are close in the input space and possess close coun-
terfactual actions. This ensures that when two clusters are
merged, their combined action sets will retain the most ef-
fective actions for the merged cluster. On the other hand,
Augmented Space prioritizes average cost, as each original
instance is mapped to a new instance incorporating the min-
imum cost action in its feature vector. Therefore, the initial
set of km actions (m per cluster) will be filtered to arrive at
a smaller set of [< km lower-cost actions and the selection
of each cluster action will be among these filtered actions.

5. Algorithm for Problem 2

We address the special case of Problem 2 using a divisive
approach, named Counterfactual Tree and outlined in Al-
gorithm 3. This algorithm starts with a single cluster con-
taining all affected instances and recursively divides it into
smaller clusters defined by subsets of the input features. The
decision to split is determined by comparing the actions of
the parent node with those of the child nodes.

Actions are generated at each node of the tree, starting with
the root. Actions for the root are generated using either
the sampling or the centroid approach, with the best action
retained based on the selected criterion (line 3, Algorithm 3).
The root then becomes the parent node, and each feature’s
splits are examined: for every feature, the node is divided
into subgroups based on the feature’s values. Actions are
generated for each subgroup, and their average score, based
on a predefined criterion, is calculated (line 4, Algorithm 3).
The subgroups associated with the feature yielding the max-
imum average score are retained. If this maximum score is
greater than the score of their parent node, these subgroups
are added as nodes to the tree (line 6, Algorithm 3). The new

1: Input: X,, a set of features for splitting F', number of local
counterfactuals m.

2: Output: A counterfactual tree where each node has an action
assigned.

3: Generate m actions for the root and keep the one maximizing
the score of a selected criterion.

4: Explore all candidate splits in the feature set F'.

5: Select the split that produces the maximum average score,
surpassing that of the root.

6: If no such split is identified, return the root and the maximum
score action.

7: Otherwise, recursively generate counterfactual trees for sub-
groups derived from the chosen split, excluding the selected
split feature from F'.

8: Consider the newly constructed counterfactual trees as chil-
dren of the root node.

9: Return the counterfactual tree.

nodes become the next parent nodes, and the feature used to
produce them is removed (line 8, Algorithm 3). The process
continues until a node has no more features to examine or
until the maximum score of the actions from all remaining
features is less than or equal to the score of its parent node
(line 7, Algorithm 3).

Notice that, from the description above, the split does not
continue if it can not find better (based on the criterion) coun-
terfactual actions for the child nodes. This informs us that
a more refined partition does not offer better performance
based on the criterion. However, this is not a limitation
for our algorithm since it is straightforward to continue the
splits at each level by just asking to split based on the feature
with the maximum score even if it does not surpass the score
of the parent node. Moreover, given the speed of our method
compared to similar methods (Kanamori et al., 2022), as
seen in Section 7.3, we can also compute the optimal tree
based on the performance of the leaves towards the criterion.

6. Solution Evaluation

Finding a solution to Problem 1 or Problem 2 that optimizes
all objectives simultaneously is not always feasible. The
effectiveness and average cost of an action set may only
improve with the addition of new actions, resulting in an
increase in the set size, which is unfavorable. Moreover,
instances that are far away from the decision boundary need
costly actions to flip their class, so an increase in effective-
ness in order to flip these points will also increase average
cost (and set size). Therefore, an optimal solution to these
problems refers to a set of values that represents the best
possible compromise among these conflicting objectives of
the problem, i.e., Pareto optimal solutions, where no other
solution is better in all objectives simultaneously. The next
two subsections formulate definitions that compare action
sets and determine their quality as a solution to Problem 1
and Problem 2.

6.1. Evaluation for Problem 1

We use the following definitions to evaluate Algorithm 1
and Algorithm 2 towards GLOBE-CE and dGLOBE-CE in
Section 7.2.

Definition 3 (Strong dominance). An action set A strongly
dominates an action set A’ if and only if:

1. size(A) < size(A’)
2. eff(A,Xaff) > efF(A’,Xaff)
3. ave(A, Xarr) < ave(A’ Xarr)

Definition 3 is straightforward; we will choose A over A’ if
it is better on all metrics.

Definition 4 (Size dominance). An action set A size domi-
nates an action set A’ if and only if:

1. size(A) < size(A’)
2. efF(A, Xaff) 2 efF(A’, Xaff)
3. avc(A, Xaff) < avc(A’, Xaff)

Definition 4 states that if an action set A is at least as good as
A’ in terms of effectiveness and average cost and is smaller,
then A is considered superior. It is worth noting that if A
strongly dominates A’, then A also size dominates A’.

Definition 5 (Dominance). An action set A dominates an
action set A’ if and only if size(A) = size(A’) and:

1. efF(A, Xaf-'f) > efF(A/,Xaff)
2. ave(A, Xasr) < ave(A’, Xagr)

The last definition applies to action sets of the same size.
If an action set A is better in terms of effectiveness and
average cost against an other set A’ of the same size, then
one should prefer A over A'.

Definition 6 (Weak Dominance). An action set A weakly
dominates another action set A’ if and only if A it is at
least as good as A’ in two objectives and exhibits a strictly
superior performance in the third one.

Observe, that if an action set A strongly dominates, or size
dominates or dominates, an action set A’ then A weakly
dominates A’. If none of the definitions above applies, then
we say that A is competitive with A’.

6.2. Evaluation for Problem 2

We will use the following definition to evaluate Algo-
rithm 3 towards CET in Section 7.2. Let (P, A) be a
solution for Problem 2, with P = (P, P»,..., P;) and
A = {aj,as,...,a:}. Then, the weighted average effec-
tiveness of A is

t
eff(A, P) = =

| Xat |

and the weighted average cost is

t
> ave(ag, By) - [Pyl - eff(as,)
avc(A, P) = =

t
=1

Utilizing the notation mentioned above, we derive a crite-
rion to assess the quality of our solution, focusing on the
performance of our algorithm within each block of the par-
tition. The weighted average effectiveness and weighted
average cost aggregate the quality of the solution at each
leaf of the partition, enabling comparison across solutions
with different numbers of leaves and different segments of
affected instances.

Definition 7 (Tree Dominance). Let (P, A) and (P’, A’) be
two solutions for Problem 2. Then, (P, A) tree dominates
(P, A') if

eff(A, P) > eff(A’, P), avc(A, P) < avc(A’, P)

or if

eff(A, P) > eff(A’, P), avc(A, P) < avc(A’, P)

Definition 7 deems an action set A superior to A" if A is at
least as good as A’ in one objective and outperforms A’ in
the other objective.

7. Experimental Evaluation

Section 7.1 describes the experimental setup, while Sec-
tions 7.2 and 7.3 present experimental results for the two
global counterfactual explainability problems.

7.1. Experimental Setting

In our experimental evaluation, we employ four publicly
accessible and widely used benchmark datasets that fo-
cus on binary classification problems: COMPAS (Angwin
et al., 2016), German Credit (Dua & Graff, 2019), Default
Credit (Yeh & Lien, 2009), and HELOC (Brown et al.,
2018). These datasets were utilized in previous research by
Rawal & Lakkaraju (2020) and Ley et al. (2023). Further
details on the datasets and the preprocessing can be found
in Appendix A.

In the context of model training, we opted for three dif-
ferent model types: XGBoost (XGB), Logistic Regression
(LR), and Deep Neural Network (DNN). Throughout all
conducted experiments, our approach strictly followed the
dataset preprocessing methodology outlined by Ley et al.
(Ley et al., 2023). Moreover, we maintained consistency
in experimental conditions by employing the same hyper-
parameters for model training as used by Ley et al. (Ley
et al., 2023). The hyperparameters utilized during model

Table 2. Subset of the comparative results of our Algorithms 1 and 2 (ITERATIVE MERGES and AUGMENTED SPACE) with various
configurations of GLOBE-CE, i.e., the default version of GLOBE-CE (GLOBE-CE), GLOBE-CE with a maximum of three micro-actions
(scalars) (GLOBE-CE), dGLOBE-CE with a maximum of three directions (DGLOBE-CE), and dGLOBE-CE with a maximum of three
directions and a maximum of three scalars per direction GLOBE-CE (DGLOBE-CE (MAX 3 SCALARS)). For all the model-dataset

combinations see Tables 9 to 12.

HELOC DNN GERMAN CREDIT LR DEFAULT CREDIT XGB

METHOD EFF CosT # ACTIONS RUNTIME EFF CostT # ACTIONS RUNTIME EFF CosT # ACTIONS RUNTIME
GLOBE-CE 100.00 % 7.75 403 4.62 SEC 72.41 % 1.28 3 3.44SEC 62.82% 0.42 14 19.63 SEC
GLOBE-CE (3 SCALARS) 100.00 % 18.58 3 9.47 SEC 72.41 % 1.28 3 0.65 SEC 51.99% 42.6 3 21.68 SEC
DGLOBE-CE 100.00 % 2.93 893 8.68 SEC 79.31 % 1.19 6 6.32 SEC 89.46 % 0.43 128 44.74 SEC
DGLOBE-CE (3 SCALARS) 99.90 % 5.98 4 6.59 SEC 75.86 % 2.06 2 2.22S8EC 5199 % 64 1 11.2 SEC

AUGMENTED SPACE 99.81 % 4.94 3 71.49 sECc 98.25% 1.82 3 24.12sEC 90.31 % 1.81 3 212.13 SEC
ITERATIVE MERGES 99.91 % 8.55 3 38.96 sec 100.00 % 1.21 3 9.64 SEC 9544 % 3.17 3 102.48 SEC

Table 3. Subset of the comparative results of our Algorithm 3 (CT) with CET. We run both algorithms with the same limitations on the
maximum number of leaves. For Algorithm 3 the maximum number of features came naturally from the pre-determined features that were
used for splits, 4 (CF TREE - 4) and 8 (CF TREE - 8) leaves accordingly. For CET we applied the restriction for a maximum number of
leaves to be in accordance with Algorithm 3 (CET-4 and CET-8).For the model-dataset combinations see Tables 14 to 17.

HELOC DNN GERMAN CREDIT LR DEFAULT CREDIT XGB
METHOD EFF CosT # ACTIONS RUNTIME EFF CoSsT # ACTIONS RUNTIME EFF CoSsT # ACTIONS RUNTIME
CET - 4 47.34% 12.69 3 13662.29 SEC 86.21% 2.32 3 91.91 SEC 45.16% 9.56 2 5324.21 SEC
CFTREE-4 97.61 % 10.88 4 156.10 SEC 100.00 % 5.39 4 18.17 SEC 79.00 % 3.34 4 257.94 SEC
CET -8 32.03% 15.90 2 11347.89 SEC 91.38% 2.52 6 72.28 SEC 39.17% 9.00 1 3119.20 SEC
CFTREE-8 90.12% 12.78 6 277.75 SEC 100.00 % 5.52 8 20.16 SEC 87.75% 3.76 6 180.95 SEC

training and statistics on the training accuracy are provided
in Appendix B.

For the initialization of Algorithms 1 and 2 we use k-
means with an initial number of clusters appropriate for
each dataset depending on the affected population, and
generate actions employing DiCE (Mothilal et al., 2020).
Therefore our cost is highly dependent on the cost of the
actions produced by DiCE. Regarding the partitioning of
Algorithm 3, it is worth noting that the flexibility inherent
in our methodology allows for the unrestricted selection
of features for splitting. For the hyperparameters, chosen
features for splitting, and additional details, we direct the
reader to Appendix C.

As for the computation of an action’s cost, we follow the
paradigm outlined in Ley et al. (2023), by binning continu-
ous features into 10 equal intervals post-training and scaling
the cost of each change proportionally to the bin length. We
also set the cost of moving from one category to another for
the categorical features to be 1. To ensure the reproducibil-
ity of our results, a consistent random seed of 13 is applied
across all models and algorithms. The code for the repro-
duction of our results can be found in the supplementary
material.

7.2. Results for Problem 1

For Problem 1 we evaluate our algorithms in comparison
with GLOBE-CE, the state-of-the-art method for generating
global counterfactuals. Specifically, we access Algorithms 1
and 2 against various configurations of GLOBE-CE, includ-

ing the default version of GLOBE-CE, GLOBE-CE with
a maximum of three micro-actions (scalars), dGLOBE-CE
with a maximum of three directions, and dGLOBE-CE with
a maximum of three directions and a maximum of three
scalars per direction. Compared to GLOBE-CE, our al-
gorithms demonstrate slightly extended runtimes, however
they remain computationally efficient. Our primary evalua-
tion criteria encompass the assessment of cost, effectiveness,
and the number of actions.

Table 2 presents only a subset of our experimental results.
For a comprehensive overview of results across all dataset-
model combinations, we refer the reader to Appendix D.
In the case of the HELOC dataset with the DNN model,
we observe a notable improvement in cost for both of our
algorithms compared to the vanilla version of GLOBE-CE,
which utilizes 403 micro-actions in a single direction. More-
over, GLOBE-CE’s average cost tends to rise as the number
of micro-actions decreases, since the magnitude of each
action increases. Contrasting this, dGLOBE-CE achieves
a reduced cost by employing 893 micro-actions in three
directions, whereas our algorithms demonstrate comparable
performance with merely three actions.

When considering the German Credit dataset with the LR
model, it becomes evident that when only a small number of
actions are required for both GLOBE-CE and dGLOBE-CE,
our algorithms can achieve similar costs with GLOBE-CE
and significantly larger levels of effectiveness.

In the Default Credit dataset - XGB model combination,
GLOBE-CE exhibits suboptimal effectiveness when em-

1007 4+ 5™ o GLOBECE
—=— [terative merges

904
—4— Augmented Space

801 Actions: 3
Actions: 5
Actions: 7

Actions: 20

704

60 -

Effectiveness

501

404

10 15 20 25 30 35 40
Cost

Figure 2. Effectiveness - Cost plot for XGBoost-HELOC combi-
nation. We present the results for Algorithms 1 and 2 (3, 5, and 7
actions) and for GLOBE-CE with a constrained number of micro-
actions, (3, 5, 7, and 20, where 20 corresponds to the unconstrained
version for the specific dataset-model combination).

dGLOBE-CE [Strongly Dominant
Augmented Space [Size Dominant
GLOBE-CE B Weakly Dominant
Augmented Space- B Dominant

ey e —
dGLOBE-CE
e ——
GLOBE-CE
dGLOBE-CE
Iterative Merges

GLOBE-CE
Iterative Merges

Herative Merge {
dGLOBE-CE
i
GLOBE-CE
0 2 4 6 8 10 12
Count

Figure 3. Visual representation of the evaluation of Algorithms 1
and 2 vs GLOBE-CE and dGLOBE-CE versions. These results
correspond to the experimental results presented in Table 2 and in
Appendix Tables 9 to 12.

ploying a single direction, despite achieving a modest cost
reduction. With only three micro-actions in this configura-
tion, the cost increases from 0.42 to 42.6. In contrast, our
proposed solutions in Algorithm 1 and Algorithm 2 exhibit
significantly reduced costs, specifically 13 and 23 times
lower, respectively. In the case of dGLOBE-CE utilizing
three directions, we attain a similar level of effectiveness
with only 3 actions (vs 128), while restricting dGLOBE-CE
to a maximum of three scalars per direction leads to 20 to
35 times higher cost than our proposed solutions.

In Figure 2, the distinction between our methodologies and
GLOBE-CE becomes evident within the HELOC dataset
using the XGBoost model, when both approaches utilize an
identical number of actions. Similar behavior is observed
when limiting dGLOBE-CE to a small number of scalars,
leading to a notable increase in cost in most cases.

Finally, we use the criteria outlined in Section 6.1 to ac-
cess our algorithms in comparison with GLOBE-CE and
dGLOBE-CE. As depicted in Figure 3, it becomes evident
that both Algorithms 1 and 2 successfully dominate GLOBE-
CE as per the definitions of dominance (Definitions 3 to 6),
achieving dominance 6 times each. Additionally, they suc-

cessfully dominate dGLOBE-CE 12 times and 7 times, re-
spectively. On the contrary, GLOBE-CE weakly dominates
Algorithm 2 in solely one dataset-model combination, while
dGLOBE-CE fails to dominate both of our algorithms across
all model-dataset combinations.

7.3. Results for Problem 2

In evaluating the proposed algorithm (Algorithm 3) for ad-
dressing Problem 2 we employ the CET framework. Both
algorithms are executed under identical constraints concern-
ing the maximum number of leaves (4 and 8 leaves). In
the case of Algorithm 3, the predetermined features used
for splits naturally dictate the maximum number of leaves
as 4 (CF TREE - 4) and 8 (CF TREE - 8). For CET we
directly restrict the maximum number of leaves by adjusting
the relevant hyperparameters (CET-4 and CET-8).

In the examples presented in Table 3 it is evident that CET
in HELOC dataset with DNN model and in DEFAULT
CREDIT dataset with XGB model, proves to be inferior
when compared to our proposed method. CET faces chal-
lenges in identifying a good partition of the space with high
effectiveness and small cost. This struggle persists despite
CET’s inherent flexibility to perform splits across the entire
feature space. While CET demonstrates better performance
with Logistic Regression models compared to other models,
leveraging model internals, our proposed solutions still out-
perform CET in terms of overall performance, with higher
effectiveness and competitive costs.

In Appendix E, we provide comprehensive results for all
model-dataset combinations. Our findings indicate that Al-
gorithm 3 consistently outperforms CET in both parameteri-
zations, considering scenarios with a maximum of 4 and 8
leaves.

8. Conclusions

This paper presents GLANCE, a novel method to provide
global counterfactual explainability. GLANCE finds a small
set of counterfactual actions, which collectively act as expla-
nations to a large number of instances at a low counterfac-
tual cost. Extensive experimental evaluation demonstrates
that GLANCE is a practical methos that consistently finds
interpretable global counterfactual summaries of high effec-
tiveness and low cost.

9. Impact Statement

In the field of explainability, especially when counterfac-
tuals are produced, there are numerous challenges when
someone attempts to define the “best” actions in terms of
cost. This is a known and intricate problem, which is pre-
viously recognized in the bibliography (Ley et al., 2023;

Kavouras et al., 2023) since the cost definition is dataset-
and individual-specific, giving rise to concerns of privacy
breaches or manipulation of the explainability of the model.
We acknowledge these difficulties, but we believe that they
are out of the scope of our paper.

We also recognize the importance of global counterfactual
explanations and their potential as a horizontal intervention.
Therefore, we firmly believe, that work in producing glob-
ally fair actions, especially in terms of Problem 2, could be
very beneficial in the advancement of the field and left for
future work.

References

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine
bias. Ethics of Data and Analytics, pp. 254-264, 5 2016.
doi: 10.1201/9781003278290-37.

Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi,
D., and Rinzivillo, S. Benchmarking and survey of expla-
nation methods for black box models. Data Mining and
Knowledge Discovery, pp. 1-60, 2023.

Brown, K., Doran, D., Kramer, R., and Reynolds,
B. HELOC applicant risk performance evaluation
by topological hierarchical decomposition. CoRR,
abs/1811.10658, 2018. URL http://arxiv.org/
abs/1811.10658.

Carreira-Perpifian, M. A. and Hada, S. S. Counterfactual
explanations for oblique decision trees: Exact, efficient
algorithms. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 6903-6911, 2021.

Dua, D. and Graff, C. Uci machine learning repository. uni-
versity of california, school of information and computer
science, irvine, ca (2019), 2019.

Gao, J., Wang, X., Wang, Y., Yan, Y., and Xie, X. Learning
groupwise explanations for black-box models. In IJCAI,
pp- 2396-2402, 2021.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Kanamori, K., Takagi, T., Kobayashi, K., and Ike, Y. Coun-
terfactual explanation trees: Transparent and consistent
actionable recourse with decision trees. In International

Conference on Artificial Intelligence and Statistics, pp.
1846-1870. PMLR, 2022.

Karimi, A.-H., Barthe, G., Scholkopf, B., and Valera,
I. A survey of algorithmic recourse: definitions, for-
mulations, solutions, and prospects. arXiv preprint
arXiv:2010.04050, 2020.

Kavouras, L., Tsopelas, K., Giannopoulos, G., Sacharidis,
D., Psaroudaki, E., Theologitis, N., Rontogiannis, D.,
Fotakis, D., and Emiris, I. Fairness aware counterfactuals
for subgroups. arXiv preprint arXiv:2306.14978, 2023.

Lakkaraju, H., Kamar, E., Caruana, R., and Leskovec, J.
Faithful and customizable explanations of black box mod-
els. In Proceedings of the 2019 AAAI/ACM Conference
on Al, Ethics, and Society, pp. 131-138, 2019.

Ley, D., Mishra, S., and Magazzeni, D. GLOBE-CE: A
translation based approach for global counterfactual ex-
planations. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 19315-19342. PMLR, 23-29 Jul
2023. URL https://proceedings.mlr.press/
v202/ley23a.html.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,
J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.,
and Lee, S.-I. From local explanations to global under-
standing with explainable ai for trees. Nature machine
intelligence, 2(1):56-67, 2020.

MacQueen, J. et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pp. 281-297. Oakland, CA,
USA, 1967.

Miller, T. Explanation in artificial intelligence: Insights
from the social sciences. Artificial intelligence, 267:1-38,
2019.

Mothilal, R. K., Sharma, A., and Tan, C. Explaining ma-
chine learning classifiers through diverse counterfactual
explanations. In Proceedings of the 2020 conference on
fairness, accountability, and transparency, pp. 607-617,
2020.

Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A.,
Ruggieri, S., and Turini, F. Meaningful explana-
tions of black box ai decision systems. Proceedings
of the AAAI Conference on Artificial Intelligence, 33
(01):9780-9784, Jul. 2019. doi: 10.1609/aaai.v33i01.
33019780. URL https://ojs.aaai.org/index.
php/AAAI/article/view/5050.

Rawal, K. and Lakkaraju, H. Beyond individualized re-
course: Interpretable and interactive summaries of action-
able recourses. Advances in Neural Information Process-
ing Systems, 33:12187-12198, 2020.

Sharma, S., Henderson, J., and Ghosh, J. CERTIFAI: coun-
terfactual explanations for robustness, transparency, inter-
pretability, and fairness of artificial intelligence models.

http://arxiv.org/abs/1811.10658
http://arxiv.org/abs/1811.10658
https://www.gurobi.com
https://proceedings.mlr.press/v202/ley23a.html
https://proceedings.mlr.press/v202/ley23a.html
https://ojs.aaai.org/index.php/AAAI/article/view/5050
https://ojs.aaai.org/index.php/AAAI/article/view/5050

CoRR, abs/1905.07857, 2019. URL http://arxiv.
org/abs/1905.07857.

Ustun, B., Spangher, A., and Liu, Y. Actionable recourse
in linear classification. In Proceedings of the conference

on fairness, accountability, and transparency, pp. 10-19,
2019.

Verma, S., Boonsanong, V., Hoang, M., Hines, K. E., Dick-
erson, J. P, and Shah, C. Counterfactual explanations and
algorithmic recourses for machine learning: A review.
arXiv preprint arXiv:2010.10596, 2020.

Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual
explanations without opening the black box: Automated
decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

Yeh, I. and Lien, C.-H. The comparisons of data min-
ing techniques for the predictive accuracy of proba-
bility of default of credit card clients. Expert Sys-
tems with Applications, 36:2473-2480, 03 2009. doi:
10.1016/j.eswa.2007.12.020.

10

http://arxiv.org/abs/1905.07857
http://arxiv.org/abs/1905.07857

Appendix

The appendix is formatted as follows.

1. In Appendix A we discuss the Datasets used in our experimental evaluation and the Preprocessing performed in each
of them.

2. In Appendix B we discuss the Models used in out experimental evaluation.

3. In Appendix C we discuss all the Hyperparameters used in our experimental evaluation, both in our methods as well as
in the state-of-art methods we utilize for comparison.

4. In Appendix D we present Further Results on Problem 1.

5. In Appendix E we present Further Results on Problem 2.

A. Datasets & Preprocessing

We use four publicly available datasets as benchmarks. Our choice is based on their established use in previous works. A
short description follows. Table 4 summarizes the datasets’ information, including the number of instances, the number
of categorical and continuous features, the input dimensions (i.e., the number of continuous features plus the number of
categorical after a preprocessing step using one-hot-encoding), and the number of instances used for train and test after the
80:20 split.

Once again, it should be mentioned that the whole of the preprocessing of the datasets (as well as the models with all their
hyperparameters) are exactly the same as in Ley et al. (2023), taken from the repository the authors have made public in
https://github.com/danwley/GLOBE-CE/. Nonetheless, we provide here a brief description of each dataset, for
completeness.

COMPAS The COMPAS dataset (Correctional Offender Management Profiling for Alternative Sanctions)
(Angwin et al., 2016) is available at ht tps://github.com/propublica/compas—analysis/blob/master/
compas—scores—two-years.csv. Detailed description and information on the dataset can be found at https:
//www.propublica.org/article/how-we-analyzed-the-compas—-recidivism-algorithm. It cat-
egorizes recidivism risk based on several factors, including race.

For the preprocessing of this dataset, we drop the “days_b_screening_arrest” feature, as it contains missing values. We
also turn jail-in and jail-out dates to durations and turn negative durations to 0. Some additional filters are taken from the
COMPAS analysis by ProPublica. Finally, the target variable’s values are transformed into the canonical O for the negative
class and 1 for the positive class.

German Credit The German Credit dataset (Dua & Graff, 2019) classifies people described by a set of attributes as good
or bad credit risks. A detailed description and the dataset can be found in https://archive.ics.uci.edu/ml/
datasets/statlog+ (german+credit+data).

The only preprocessing step we performed for this dataset was the transformation of the target variable’s values into O - 1.

Default Credit The Default Credit dataset (Yeh & Lien, 2009) is designed to classify the risk of default on customer
payments, aiming to support the development and assessment of models for predicting creditworthiness and the likelihood of
loan default. It can be obtained at https://archive.ics.uci.edu/ml/datasets/default+of+credit+
cardt+clients.

To properly work with this dataset, we needed to drop the “ID” feature, since it holds no useful information, and transform
the target labels into the canonical O - 1 values.

HELOC The HELOC (Home Equity Line of Credit) dataset (Brown et al., 2018) contains anonymized information about
home equity line of credit applications made by real homeowners, classifying credit risk. It is available at https://
community.fico.com/s/explainable-machine-learning-challenge. All the features on this dataset
are numeric.

11

https://github.com/danwley/GLOBE-CE/
https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge

A substantial percentage of these features’ values are missing, so the main preprocessing step we performed here was to
remove rows where all values are missing, and then replace all remaining missing values with the median of the respective
feature. Other than that, we only needed to transform target labels to O-1.

Table 4. Summary of the datasets used in our experiments. Specifically, we list the number of instances, input dimensions (i.e., the number
of continuous features plus the number of categorical after a preprocessing step using one-hot-encoding), the number of categorical and
continuous features, and the number of instances used for train and test after the 80:20 split.

DATASET NO. INSTANCES INPUT DIM. CATEGORICAL CONTINUOUS TRAIN TEST

COMPAS 6172 15 4 2 4937 1235

GERMAN CREDIT 1000 71 17 3 800 200

DEFAULT CREDIT 30000 91 9 14 24000 6000

HELOC 9871 23 0 23 7896 1975
B. Models

In our experimental framework, three distinct models are employed: XGBoost (XGB), Logistic Regression (LR), and
Deep Neural Networks (DNNs). We train these models with the same 80:20 train-test split as Ley et al. (2023); the
distinctive hyperparameters for each model were also obtained from Ley et al. (2023), facilitating a standardized basis for
the comparative analysis of our methodologies.

XGBoost (XGB) Implementation from the common xgboost? library. Hyperparameter values for each dataset and the
model’s accuracy on the test set are shown in Table 5.

Table 5. XGBoost Hyperparameter Configurations.

DATASET DEPTH ESTIMATORS ~,a,A TEST ACCURACY
COMPAS 4 100 1,0,1 68%
GERMAN CREDIT 6 500 0,0,1 T4%
DEFAULT CREDIT 10 200 2,4,1 83%
HELOC 6 100 4,41 74%

Logistic Regression (LR) Implementation from the common sk learn* library. Hyperparameter values for each dataset
and the model’s accuracy on the test set are shown in Table 6.

Table 6. Logistic Regression Hyperparameter Configurations.

DATASET MAX ITER. CLASS WEIGHTS(0:1) TEST ACCURACY
COMPAS 1000 1:1 65%
GERMAN CREDIT 1000 1:1 76%
DEFAULT CREDIT 2000 0.65:0.35 83%
HELOC 2000 1:1 75%

Deep Neural Network (DNN) Implementation using pytorch? library. Hyperparameter values for each dataset and the
model’s accuracy on the test set are shown in Table 7.

C. Hyperparameters & Implementation Details

In this section, we discuss in detail the set of parameters for each one of the algorithms examined in this work and provide the
values we have used for these parameters in our experiments. First, we describe the parameters of our proposed algorithms
(Iterative Merges, Augmented Space, and Counterfactual Tree), and then we proceed with the rest of the state-of-the-art
algorithms examined (GLOBE-CE and CET), as well as the algorithms we integrated into our approach (k-means and
DiCE).

*https://xgboost.readthedocs.io/en/stable/

‘nttps://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

Shttps://pytorch.org/docs/stable/index.html

12

https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://pytorch.org/docs/stable/index.html

Table 7. Deep Neural Network Hyperparameter Configurations.

DATASET WIDTH DEPTH DROPOUT TEST ACCURACY
COMPAS 30 5 0.4 65%
GERMAN CREDIT 50 10 0.3 78%
DEFAULT CREDIT 80 5 0.3 81%
HELOC 50 5 0.3 74%

C.1. Iterative Merges

Our Iterative Merges algorithm requires the clustering of individuals in feature space and for each cluster to find some
representative counterfactuals. Therefore, the first two parameters we need to provide to our algorithm are CLUSTERS,
which denotes the number of initial clusters to be produced, and CENTROID_CFS_NUM, which represents the number of
counterfactual explanations to be generated per cluster. To generate the counterfactuals, two sampling methods can be
utilized, “sampling” or “centroid”, and this can be defined by the SAMPLING_METHOD parameter. Our algorithm
proceeds by using a distance function to merge the clusters up to the specified number of final clusters. The parameter
THRESHOLD sets up the number of final clusters after the merges. We also need to define the function that will be used
to measure the distance from one instance to another, which can be set up by the DIST_FUNC parameter. To enable the
reproduction of the results we use the RANDOM_STATE parameter.

For our experiments, we have used CLUSTERS = 100 and CENTROID_CFS_NUM = 10 for all datasets, except for the
German Credit dataset, which contained a very small number of affected individuals, and as such the experiments were
run with CLUSTERS = 20 and CENTROID_CFS_NUM = 50 (so that the total number of generated local counterfactuals is
constant for all datasets). For the SAMPLING_METHOD parameter, in the experiments presented in both the main paper and
the appendix, we have consistently used “centroid”. As for the THRESHOLD, it is set to 3 (which can also be observed in
Appendix D since it coincides with the number of explanations given in the output). The DIST_FUNC is always set to the
cost function we discussed in detail in Section 7.1 and RANDOM_STATE is always set to 13.

C.2. Augmented Space

Our Augmented Space algorithm shares a similar initial phase with the Iterative Merges, as we have also described in the main
body of the paper. This involves the clustering of individuals in feature space into numerous clusters and for each cluster,
selecting a limited number of representative counterfactuals. These counterfactuals are then translated into actions and
applied to all the individuals in the cluster. Therefore, the first two parameters we need to provide to our algorithm are (again)
N_INITIAL_CLUSTERS, which denotes the number of initial clusters to be produced, and N_CLUSTER_SAMPLES, which
stands for the number of counterfactual explanations to be generated per cluster. Two sampling methods, “sampling” or
“centroid”, can be utilized to generate the counterfactuals, and this can be defined by the SAMPLING_METHOD parameter.
Our algorithm then proceeds by concatenating each instance with its cost-efficient effective action and subsequently by
re-clustering these “augmented” instances. The N_FINAL_CLUSTERS parameter determines the number of sets of individuals
for this phase. The algorithm’s output comprises these sets of individuals, in the form of clusters, and the best action (in
terms of effectiveness) together with its effectiveness and cost, for each of these clusters. Additionally, the DIST_FUNC
parameter is used to define the function measuring the cost to move from one instance to another. To enable the reproduction
of the results we use the RANDOM_STATE parameter.

For our experiments, we have used N_INITTIAL_CLUSTERS = 100 and N_.CLUSTER_SAMPLES = 10 for all datasets, except for
the German Credit dataset, where the experiments were run with N_INITIAL_CLUSTERS = 20 and N_.CLUSTER_SAMPLES =
50 (so that the total number of generated local counterfactuals is constant for all datasets). For the SAMPLING_METHOD
parameter, in the experiments presented in both the main paper and the appendix, we have consistently used “centroid”. As
for the N_FINAL_CLUSTERS, it is once again consistently set to 3. The DIST_FUNC is always set to the cost function we
discussed in detail in Section 7.1 and RANDOM_STATE is always set to 13.

C.3. Counterfactual Tree

Our Counterfactual Tree algorithm requires to begin with a node of all the affected individuals and produce a counterfactual
for them using a set of candidate features. The output of the algorithm will be an interpretable tree, which, based on
this set of candidate features, will provide recourses for the group of individuals along with the recourses’ effectiveness

13

and cost. Therefore, the first parameter we need to provide to our algorithm is SAMPLING_METHOD which denotes the
method to generate counterfactuals, “sampling” or “centroid”, as well as the set of candidate features to provide
recourse with, which can be done by providing the CANDIDATE_FEATS parameter. To tune the number of random samples to
choose, when using the “sampling” method, the parameter SAMPLE_SIZE must be provided. Similarly, when using the
“centroid” method, the parameter CENTROID_CFS_NUM should be provided. Finally, at any given node within the tree,
when partitioning the data on a feature, our method divides it into all unique values of that feature by default. To regulate
this process and consequently limit the number of children a node may have, we introduce the CHILD_COUNT parameter.
When equal to -1, it keeps the default behavior, otherwise, each node will have CHILD_COUNT children.

3

For the experiments presented in both the main paper and the appendix the “centroid” was used as the SAM-
PLING_METHOD. The CENTROID_CFS_NUM parameter is always set to 30. The CHILD_COUNT parameter is always
set to 2, to be able to produce trees with at most 4 or 8 leaves (which is how we run our experiments in Appendix E, for
comparison purposes with Kanamori et al. (2022)).

Finally, the CANDIDATE_FEATS parameter is chosen on a per-dataset basis as follows:

Table 8. COMPAS Dataset

COMPAS GERMAN CREDIT DEFAULT CREDIT HELOC
MAX # LEAVES =4 SEX, C_CHARGE_DEGREE TELEPHONE, FOREIGN-WORKER AGE, SEX NUMSATISFACTORY TRADES, NUMTOTALTRADES
MAX # LEAVES =8 SEX, C_CHARGE_DEGREE TELEPHONE, PROPERTY MARRIAGE, SEX NUMTRADES60EVER2DEROGPUBREC, NUMSATISFACTORY TRADES, NUMTOTALTRADES

C.4. GLOBE-CE

The state-of-the-art algorithm GLOBE-CE (Ley et al., 2023) requires the definition of several parameters, such as the
number of different directions sampled, which is defined by the N_SAMPLE parameter; the magnitude of all those initial
direction vectors is determined by the MAGNITUDE parameter. The number of features changed by all generated actions is
defined by the N_FEATURES parameter.

A parameter of great importance is N_DIV, the number of best directions selected from the initially sampled ones. For the
vanilla GLOBE-CE, this is equal to 1, i.e. it picks the direction with the highest effectiveness. For dGLOBE-CE, d > 1
directions are chosen.

These directions (either 1 or d) are subsequently explored by scaling each one with many scalar values. The number of
different scalars to use can be defined by the N_.SCALARS parameter.

In our experimental setup, designed to ensure a fair comparison, we standardized N_SAMPLE and N_SCALARS to 1000. In
addition, we conducted experiments varying SPARSITY_POWER (evaluated at 1 and 5), MAGNITUDE (evaluated at 1 and 2),
and N_FEATURES (examined at 5 and 2), mirroring the parameter choices found in GLOBE-CE’s source code examples. It
should be stressed that the parameters were heavily experimented with and the results presented showcase the configurations
that achieve optimal cost-effectiveness across our experiments.

The same parameter configurations were used for the dGLOBE-CE experiments with N_DIV set to 3.

C.5. CET

The tree-based state-of-the-art algorithm CET (Kanamori et al., 2022) requires the definition of several parameters such as
the maximum number of iterations of the algorithm, which is defined by the MAX_ITERATION parameter, the maximum
number of leaves, defined by the MAX_LEAF_SIZE parameter and the maximum number of features to change, which can
be defined by the MAX_CHANGE_NUM parameter. The algorithm also requires the definition of two additional parameters,
GAMMA and LAMBDA, which are scalar variables used in the objective function of the optimization problem CET defines
and solves (as a subroutine). We thought it significant to mention that tweaking these parameters appears to be essential for
achieving satisfactory results.

In our experiments, we have used MAX_ITERATION = 100, MAX_CHANGE_NUM = 4, GAMMA = 1 and LAMBDA = 0.02. All
experiments were run twice, once with MAX_LEAF_SIZE = 4 and once with MAX_LEAF_SIZE = 8.

14

https://github.com/danwley/GLOBE-CE/

C.6. k-means

As part of our proposed algorithms, we employed the well-known k-means algorithm (MacQueen et al., 1967). The k-means
algorithm requires the definition of three parameters: the N-CLUSTERS, which denotes the number of clusters to form as
well as the number of centroids to generate, the N-INIT, which denotes the number of times the k-means algorithm is run
with different centroid seeds and finally, the RANDOM-SEED which indicates the random seed we mentioned before to have
reproducible results.

We used the scikit-learn implementation for k-means, and details can be found in https://scikit-learn.
org/stable/modules/generated/sklearn.cluster.KMeans.html. In our experiments, the N-CLUSTERS
is naturally set to the number of desired final clusters/explanations, as described above in each of our methods. N-INIT is set
to 10 and RANDOM-SEED to 13.

C.7. DiCE

Finally, as part of our proposed algorithms, we employed the DiCE algorithm (Mothilal et al., 2020) for the generation of
local counterfactuals. The algorithm requires a set of parameters to define before execution, such as the DATASET parameter
to define the dataset we want to use, the MODEL parameter which incorporates our trained ML model, and also which
of the features of the dataset are continuous, which can be defined by the CONTINUOUS_FEATURES parameter. It is also
important to define the name of the target variable, denoted by the OUTCOME_NAME parameter. Additionally, we need
to define through the BACKEND parameter the backend of the model implementation. Lastly, it is important to define the
method to use when generating counterfactuals, through the METHOD parameter.

We used the dice-ml python library, which can be found https://interpret .ml/DiCE/. In our experiments, we
set the BACKEND parameter to “sklearn”, since the models used follow the scikit-1learn paradigm. METHOD is set
to “random”, for Randomized Sampling. To DATASET and MODEL we pass the dataset and model with which we want to
perform each run, and CONTINUOUS_FEATURES and OUTCOME_NAME are set on a per-dataset basis.

D. Additional Results for Problem 1

We evaluate our algorithms in comparison with GLOBE-CE, which is the state-of-the-art method for producing global
counterfactuals. Specifically, we compare Algorithms 1 and 2 with default GLOBE-CE, GLOBE-CE with a constrained
number of micro-actions (scalars) to a maximum of 3, dGLOBE-CE with a maximum of 3 directions, and dGLOBe-CE
with a maximum of 3 directions and a maximum of three scalars per direction. Our algorithms are slower than all versions
of GLOBE-CE. However, they remain computationally efficient. We primarily assess our algorithms in terms of cost,
effectiveness, and the number of actions. Tables 9 to 12 summarize the results for each dataset-model combination.

Table 9. COMPAS Dataset

METHOD / MODEL DNN LR XGB

EFF CoST # ACTIONS RUNTIME EFF COST # ACTIONS RUNTIME EFF COST # ACTIONS RUNTIME
GLOBE-CE 98.75% 2.83 182 9.45 SEC 100.00 % 1.78 78 3.7 SEC 85.4 % 0.97 25 10.5 SEC
GLOBE-CE (SCALARS 3) 98.75% 7.27 3 4.24sec 100.00% 5.12 3 1.43 SEC 85.00 % 4.19 3 7.48 SEC
DGLOBE-CE 98.75% 2.43 291 19.36 Sec 100.00 % 1.42 280 9.48 SEC 100.00 % 0.93 111 21.83 SEC
DGLOBE-CE (SCALARS 3) 98.75 % 10.9 2 3.94 sec 100.00 % 7.13 6 1.85 SEC 19.2 % 25.77 3 3.69 SEC
AUGMENTED SPACE 92.85% 4.13 3 20.11 sec 100.00 % 7.04 3 13.14 sec 98.40 % 4.95 3 16.08 SEC
ITERATIVE MERGES 95.96 % 3.32 3 25.04 sec 100.00 % 2.77 3 13.48 SEC 99.60 % 1.99 3 21.96 SEC

Table 10. German Credit Dataset

METHOD / MODEL DNN LR XGB

EFF CoST # ACTIONS RUNTIME EFF CosT # ACTIONS RUNTIME EFF CosT # ACTIONS RUNTIME
GLOBE-CE 96.49 % 1.09 6 8.31 SEC 72.41 % 1.28 3 3.44 SEC 70.27 % 1.23 4 13.66 SEC
GLOBE-CE (SCALARS 3) 94.73 % 1.17 3 5.76 SEC 72.41 % 1.28 3 0.65 SEC 67.56 % 1.17 3 12.16 SEC
DGLOBE-CE 100.00 % 1.42 55 18.58 sec 79.31 % 1.19 6 6.32 SEC 81 % 1.19 21 31.4 SEC
DGLOBE-CE (SCALARS 3) 100.00 % 3.49 2 4.25 SEC 75.86 % 2.06 2 2.22 SEC 78.37 % 6.4 3 6.2 SEC
AUGMENTED SPACE 100.00 % 1.56 3 68.59 SEC 98.25 % 1.82 3 24.12sec 97.30 % 1.06 3 22.49 SEC
ITERATIVE MERGES 100.00 % 1.47 3 41.95sec 100.00% 1.21 3 9.64sec 100.00% 1.08 3 22.72 SEC

Figure 3 of the main paper provides a summary in a stacked bar plot form regarding the dominance for specific method
combinations, following the Definitions 3 to 6. As we can see our methods dominate GLOBE-CE variations in many of the

15

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://interpret.ml/DiCE/

Table 11. Default Credit Dataset

METHOD / MODEL DNN LR XGB

EFF COST # ACTIONS RUNTIME EFF CoST # ACTIONS RUNTIME EFF COST # ACTIONS RUNTIME
GLOBE-CE 99.82 % 1.06 4 20.83 sec 100.00 % 1.06 10 7.37 SEC 62.82% 0.42 14 19.63 SEC
GLOBE-CE (SCALARS 3) 99.65 % 3.41 3 17.44 sec 100.00 % 1.08 3 2.69 SEC 51.99% 42.6 3 21.68 SEC
DGLOBE-CE 100.00 % 0.97 253 44.97 sec 100.00 % 1.11 7 12.96 SEC 89.46 % 0.43 128 44.74 SEC
DGLOBE-CE (SCALARS 3) 100.00 % 5.5 6 11.22 sec 100.00 % 6.4 2 4.49 SEC 51.99 % 64 1 11.2 SEC
AUGMENTED SPACE 100.00 % 1.13 3 733 SEC 100.00 % 1.00 3 82.94sec 90.31 % 1.81 3 212.13 SEC
ITERATIVE MERGES 100.00 % 1.00 3 410 SsEC 100.00 % 1.06 3 119.79 SEc 95.44 % 3.17 3 102.48 SEC

Table 12. HELOC Dataset

METHOD / MODEL DNN LR XGB

EFF CoST # ACTIONS RUNTIME EFF CoST # ACTIONS RUNTIME EFF CoSsT # ACTIONS RUNTIME
GLOBE-CE 100.00 % 7.75 403 4.62 SEC 99.90 % 0.41 588 1.00 SEC 34.82 % 1.57 20 3.66 SEC
GLOBE-CE (SCALARS 3) 100.00 % 18.58 3 9.47 SEC 99.09 % 0.66 3 1.63 SEC 34.15% 42.66 3 7.68 SEC
DGLOBE-CE 100.00 % 2.93 893 8.68 SEC 99.90 % 0.41 588 1.38 SEC 4791 % 1.68 70 7.91 SEC
DGLOBE-CE (SCALARS 3) 99.90 % 5.98 4 6.59 SEC 99.90 % 1.27 6 2.09 SEC 42.97 % 64.7 5 5 SEC
AUGMENTED SPACE 99.81 % 4.94 3 71.49 sec 100.00 % 1.37 3 96.82 SEC 96.20 % 22.74 3 53.79 SEC
ITERATIVE MERGES 99.91 % 8.55 3 38.96 sEc 100.00 % 1.42 3 93.26 SEC 9943 % 24.77 3 59.41 SEC

dataset-model combinations.

However, there are dataset-model combinations that the solutions proposed by Algorithms 1 and 2 are deemed to be
competitive with GLOBE-CE variations, since none dominates the other. Thus we want to make the following observations.
(1) In some cases GLOBE-CE achieves a very small cost with a high number of scalars (micro-actions), while our methods
achieve comparable cost and efficiency but with only 3 actions (e.g., Compas Dataset-DNN model combination). Limiting
the scalars of GLOBE-CE leads to higher costs. (2) GLOBE-CE may achieve a small cost but at the same time fail to
achieve high efficiency, while our algorithms aim to achieve high efficiency (e.g., Default Credit -XGB) even at the expense
of the cost (e.g., HELOC XGB). We notice that in such cases, limiting the scalars of GLOBE-CE variations may lead
to very large costs. (3) Scaling up our algorithms (i.e., an increase in our number of counterfactuals) may also lead to
domination following one or more of the Definitions 3 to 6, especially when the two methods are comparable (see the results

in Table 13).

Table 13. Additional results of our methods

HELOC DNN GERMAN CREDIT DNN Compas LR Compas DNN
METHOD EFF CosT # ACTIONS ~ RUNTIME EFF CoST # ACTIONS RUNTIME EFF CosT # ACTIONS ~ RUNTIME EFF CosT # ACTIONS ~ RUNTIME
GLOBE-CE 100.00 % 7.75 403 4.62 SEC 96.49 % 1.09 6 8.31 SEC 100.00 % 1.78 78 3.7 SEC 98.75 % 2.83 182 9.45 SEC
GLOBE-CE (3 SCALARS) 100.00 % 18.58 3 9.47 SEC 94.73 % 1.17 3 5.76 SEC 100.00 % 5.12 3 1.43 sEC 98.75 % 7.27 3 4.24 seC
DGLOBE-CE 100.00 % 2.93 893 8.68 SEC 100.00 % 1.42 55 4.25 SEC 100.00 % 1.42 280 9.48 SEC 98.75 % 2.43 291 19.36 SEC
DGLOBE-CE (3 SCALARS) 99.90 % 5.98 4 6.59 SEC 100.00 % 3.49 2 4.25 SEC 100.00 % 7.13 6 1.85 SEC 98.75 % 10.9 2 3.94 seC
AUGMENTED SPACE (SCALED) 100.00 % 2.64 50 53.15sECc 100.00 % 1.05 25 177.434 sec 100.00 % 1.39 100 18.17 seC 93.93 % 1.49 50 48.65 SEC
ITERATIVE MERGES (SCALED) 100.00 % 3.58 50 50.21 sec 100.00 % 1.07 25 136.24 sec 100.00 % 1.1 50 21.32 sEC 96.27 % 1.95 50 40.75 SEC
E. Results for Problem 2

In Tables 14 to 17, we present the results of our experiments for Problem 2. Specifically, we show the 3 main objectives
we have discussed in the main body of the paper, i.e. effectiveness, cost, and number of leaves. Additionally, we show the
runtime (in seconds) of each experiment.

Table 14. German Credit Dataset

METHOD / MODEL DNN LR XGB

EFF CoSsT # LEAVES RUNTIME EFF CosT #LEAVES RUNTIME EFF CoST # LEAVES RUNTIME
CET -4 92.98% 1.17 2 374.60 SEC 86.21% 2.32 3 9191 sEC 94.59% 3.29 3 379.25 SEC
CF TREE - 4 100.00 % 1.99 3 39.13 SEC 100.00 % 5.39 4 18.17 sec 100.00 % 4.20 4 22.28 SEC
CET -8 89.47% 1.00 1 219.71 SEC 91.38% 2.52 6 72.28 sec 100.00% 3.15 6 254.19 SEC
CF TREE - 8 100.00 % 1.85 8 44.52 SEC 100.00 % 5.52 8 20.16 sEC 100.00 % 3.49 7 22.51 SEC

Figure 4 provides a summary in a bar plot form regarding the dominance for specific method combinations, following the
Definition 7. As we can see our methods dominate CET variations in some dataset-model combinations, while CET fails to
dominate us in any combination.

16

Table 15. COMPAS Dataset

METHOD / MODEL DNN LR XGB

EFF CosT # LEAVES RUNTIME EFF CoSsT # LEAVES RUNTIME EFF CoST # LEAVES RUNTIME
CET - 4 39.81% 1.18 2 899.37 SEC 69.46% 0.96 4 13242 SEC 76.20% 1.03 2 990.70 SEC
CF TREE - 4 89.64 % 3.42 4 4221 SEC 100.00 % 6.61 4 32.06 SEC 98.36 % 5.10 4 46.07 SEC
CET -8 58.79% 2.13 3 575.16 SEC 86.61% 1.70 6 89.47 SEC 80.60% 1.28 4 718.57 SEC
CF TREE - 8 86.16 % 5.00 8 83.26 SEc 100.00 % 5.85 8 60.50 sSECc 100.00 % 5.51 8 89.45 SEC

Table 16. Default Credit Dataset

METHOD / MODEL DNN LR XGB

EFF COST # LEAVES RUNTIME EFF CoST # LEAVES RUNTIME EFF COST # LEAVES RUNTIME
CET - 4 65.71% 9.48 2 7981.46 SEC 99.34% 2.40 1 3324.19 SEC 45.16% 9.56 2 5324.21 SEC
CF TREE - 4 100.00 % 3.57 4 316.31 S 100.00 % 10.43 4 123.31sec 79.00 % 3.34 4 257.94 SEC
CET-8 67.80% 6.71 3 4203.78 SEC 99.34% 2.40 1 2368.79 SEC 39.17% 9.00 1 3119.20 SEC
CF TREE - 8 100.00 % 4.32 6 332.47sec 100.00 % 5.42 6 12436 sec 87.75% 3.76 6 180.95 SEC

Table 17. HELOC Dataset

METHOD / MODEL DNN LR XGB

EFF CoSsT # LEAVES RUNTIME EFF CoST # LEAVES RUNTIME EFF CoST # LEAVES RUNTIME
CET -4 47.34% 12.69 3 13662.29 SEC 98.08% 4.18 2 2018.43 SEC 36.53% 14.10 2 13668.97 SEC
CF TREE - 4 97.61 % 10.88 4 156.10 SEC 100.00 % 8.50 4 188.47 SEC 94.66 % 21.36 4 150.82 SEC
CET -8 32.03% 15.90 2 11347.89 SEC 99.90% 1.66 1 1319.07 Sec 28.46% 6.21 4 10842.03 SEC
CF TREE - 8 90.12% 12.78 6 277.75 SEC 100.00 % 8.83 6 344.05 SEC 96.76 % 24.39 6 272.02 SEC

CF Tree-8
CET-8

CF Tree-4
CET-4

CET-8
CF Tree-8

CET-4
CF Tree-4

Count

Figure 4. Visual representation of the evaluation of Algorithm 3 vs CET. These results correspond to the experimental results presented in
the Tables 14 to 17.

We want to make the following observations. (1) We achieve higher effectiveness in all cases, while CET’s cost is lower
only in cases where the difference in effectiveness is particularly significant; which is to be expected. The final number of
actions has more variance, however, we believe that this is less significant, given the large difference in effectiveness. (2) We
can see that in all cases our experiments’ runtime is at least one order of magnitude lower, which is a very important part of
our contribution. (3) Moreover, there are notable caveats with CET that we thought were important to highlight since they
considerably hindered the performance and ease of use of the method®. (4) Our framework exposes the selection of features
by which to construct the tree as a hyperparameter to the user. As we have mentioned in the main body, the user may wish to
extract counterfactuals for a segmentation based on specific features of the dataset. (5) The comparison with CET in specific

“We needed a medium-effort experimentation with different MILP solvers before we could run the framework in a sensible amount
of time. The openly available solvers we tested took a very long time to run, while other options, including the default, seemed to be
available only via a license. In the end, we are using, for our experiments, the well-known gurobi solver (Gurobi Optimization, LLC,
2023), with an academic license. Moreover, CET optimizes the whole structure of the tree. However, we believe this turns out to be a
disadvantage because it outputs a single “optimal” solution (which turns out to be unsatisfactory, as we mentioned earlier).

17

models is not entirely fair to our algorithm, since CET takes advantage of model internals to calculate counterfactuals for
the populations on the leaves (they solve an LP which depends on the model). Specifically, they use model internals for
Logistic Regression, Random Forests, and MLPs, and employ a LIME approximation for any other model. Incidentally, this
also reinforces our algorithm’s dominance on the results for the Logistic Regression, since CET uses internal information,
which our framework does not.

Additionally, it should be mentioned that CET is not entirely black-box. To calculate counterfactuals for the populations
on the leaves, they solve an LP which depends on the model. They use model internals for Logistic Regression, Random
Forests, and MLPs, and employ a LIME approximation for any other model. Incidentally, this also reinforces our algorithm’s
dominance on the results for the Logistic Regression, since CET uses internal information, which our framework does not.

18

