Sequence-Aware Recommenders

Recommender Systems

Dimitris Sacharidis
introduction
recommenders in practice

• differ from standard recommenders in three main ways:
 • long-term vs. short-term interests
 • users vs. sessions
 • richer input
long-term vs. short-term interests

- typically recommenders learn correlations in a ratings matrix
- by observing user behavior in the past
- that capture the long-term user preferences
 - e.g., tastes of users in movies, music

- assumption: what people look for is determined by long-term interests

- in practice, this may not necessarily hold
- short-term interests may be as important, or more
 - the intent of the user
 - e.g., when playing music, what I just listened to matters most
users vs. sessions

• in some cases, long-term profiling is not possible
• the system may not know of users
 • e.g., users not logging in, just browsing

• system only sees sessions of activity
• captures the short-term preferences of the user
• but still needs to make recommendations
richer input

• users give feedback from which the system learns

• originally, explicit feedback, e.g., ratings

• then, implicit feedback, e.g., purchases

• now, richer implicit feedback, e.g., an interaction log
 • multiple actions possible for an item
 • e.g., item-view, item-purchase, add-to-cart
sequence-aware recommenders

• important distinction:
• input is a sequence of actions, the interaction log
 • order matters

[2018 ACM Comp. Surveys M. Quadrana et al.] Sequence-Aware Recommender Systems
input

• how much past information is used to make recommendations

• **last-N interactions**
 • sometimes only last interaction
 • e.g., next Point-Of-Interest (POI) recommendation
 • e.g., “customers who bought X also bought”

• **session-based recommender**
 • not aware of users; e.g., not logged-in, anonymous
 • *short-term* interest

• **session-aware recommender**
 • past sessions of users are known; e.g., logged-in, cookies
 • *short-term* and *long-term* interest
output

• ordered list of items, with different interpretation

• **alternatives**; e.g., other hotels

• **complements**; e.g., accessories to an item

• **continuations**
 • with restrictions on order: e.g., course prerequisites
 • without restrictions on order: e.g., next tracks in an automated playlist
conventional algorithms

U-U CF, I-I CF, Matrix Factorization
conventional methods

• do they apply? sure

• let’s simplify a bit:
 • one type of action; e.g., rating, click, purchase
 • order of actions does not matter; set of previous item interactions

• can we handle sessions instead of users?

• yes! treat a **session** like a **user**
 • let’s revisit conventional methods
user-user CF

• user=session; a session is a set of previously interacted items
• identical to UU CF for implicit feedback
• called **session-based kNN** method in [2017 RecSys]
• shown to outperform more elaborate methods

\[
\hat{r}(s, i) = \sum_{s' \in N(s)} w_{s,s'} \cdot 1(i \in s')
\]

- predicted score of target item to current session
- neighborhood of current session
- session-session cosine similarity
- only consider neighbors that contain target item

[2017 RecSys D. Jannach, M. Ludewig] *When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation*
item-item CF

• again, user=session
• similarity of items based on the sessions they appear in
 • or learn the weights as in SLIM
• prediction for a target item is the sum of similarities of all current session items
 • or consider only the last session item

\[\hat{r}(s, i) = \sum_{j \in s} w_{i,j} \]

predicted score of target item to current session
item-item similarity
matrix factorization et al.

- again, user=session
- one issue, must train for each new session
 - why? must learn the features of current session

- **alternative**: do not explicitly learn features for current session
- instead learn two sets of features for items
 - the q’s and the y’s (just like SVD++)
 - a session is represented by the y’s of the items it contains

\[
\hat{r}(s, i) = q_i^T \sum_{j \in s} y_j = \sum_{j \in s} q_i^T y_j
\]

predicted score of target item to current session

- item features
- item-in-session features
sequence-aware algorithms

Markov Processes, Recurrent Neural Networks
Markov Processes

• (a.k.a. Markov chains) describe transitions between states of the world
• S_t is the state at time t
• “the future is independent of the past given the present”

$$Pr[S_{t+1}|S_1, \ldots, S_t] = Pr[S_{t+1}|S_t]$$

• the present state tells you everything you need to know
• throw away history (or carefully encode it into the state!)
Markov Processes

• the world can be fully described by the **state transition probabilities**

\[P_{s,s'} = Pr[S_{t+1} = s'|S_t = s] \]

the probability of moving from state \(s \) to \(s' \)

• these state transition probabilities can be nicely organized in the **state transition matrix**
Markov Processes for Recommendations

• modeling the recommendation problem as an MP

• **state** is the **sequence** of previous user interactions

• typically sequences of length up to k

$$s = (i_1, \ldots, i_k)$$

• how many states? too many! m^k (m is the number of items)
 • so k has a small value like 3 or even 1
Markov Processes for Recommendations

• suppose state transition probabilities are known
 • (we come back to this)

• then to recommend:
 • given the present, find the most probable next state, the future
 • return the last item in the future state

• let \(s = (i_1, \ldots, i_k) \) be the present state
• and assume \(s' = (i_2, \ldots, i_{k+1}) \) is the most probable future state
• then recommend item \(i_{k+1} \)
Markov Processes for Recommendations

• how to learn the state transition probabilities

• via maximum likelihood estimation

• which involves counting how many times sequences appear in the interaction log

• consider a from state \(s = (i_1, \ldots, i_k) \) and a to state \(s' = (i_2, \ldots, i_{k+1}) \)

• the transition probability is computed as

\[
P_{s,s'} = \frac{Pr[(i_1, \ldots, i_{k+1})]}{Pr[(i_1, \ldots, i_k)]}
\]

how many times we see the transition, i.e., join of the from and to sequences

how many times we see the from sequence
Markov Processes for Recommendations

• sparseness issue: the **state space may be too large** and the observed transitions too few

• some ideas:
 • make k=1; next item transitions
 • skipping, clustering, mixture; see [2005 JMLR G. Shani et al.]
Markov Processes for Recommendations

- MPs address **session-based** problem
 - not user personalized

- what if we have users *and* sessions, the **session-aware** problem

- transition matrix per user, based on her sessions

- i.e., a transition **cube**: from-item, to-item, user

- the cube is even more sparse!

- but we can **factorize** the cube to exploit correlations across its dimensions

[2010 WWW S. Rendle et al.] *Factorizing Personalized Markov Chains for Next-Basket Recommendation*
from Neural Networks …

• an NN layer transforms an **input** vector \(x \) to an **output** vector \(y \)

• two ingredients:
 • nonlinear function (e.g., tanh, ReLU): \(g() \)
 • weight matrix: \(W_{xy} \)

\[
output \ y = g(W_{xy}x)
\]
... to Recurrent Neural Networks

- can transform a **sequence** of vectors to a **sequence** of vectors
- RNNs have a hidden state that controls its output
 - a feedback loop
- different flavors: basic RNN, LSTM, GRU

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNNs for Recommendations

for training:
• feed a session to the RNN \(s = (i_1, \ldots, i_k) \)
• at each step, we want the output to be the next item

[2016 ICLR B. Hidasi et al.] *Session-based Recommendations with Recurrent Neural Networks*
RNNs for Recommendations

to recommend:
• feed the **current session**
• look at the **last output**, to select the next item

\[
(i_2, \ldots, i_k, ?) = \left(i_1, \ldots, i_k \right)
\]

[2016 ICLR B. Hidasi et al.] *Session-based Recommendations with Recurrent Neural Networks*
RNNs for Recommendations

• not always better than conventional algorithms [2017 RecSys]
• combining them brings benefits